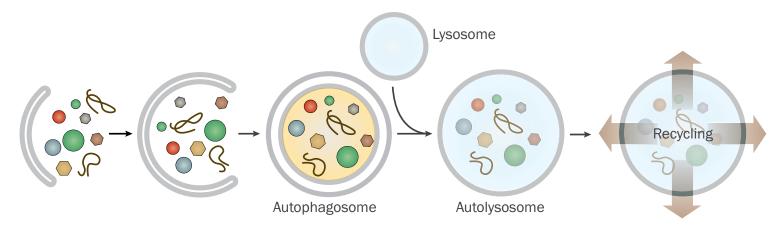


LIFE SCIENCE BRANDS



Making Your Success Our Goal

Autophagy is an exciting and rapidly expanding research area that brings new insight into biological mechanism studies as well as the promise to target autophagy-related pathways for therapeutic purposes. Bio-Techne offers a broad range of high quality products for studying all aspects of autophagy.

Find Comprehensive Solutions For Your Autophagy Research

Top Life Science Brands:	One-Stop Shop For All Your Reagent Needs:	Well Trusted Products & Services:
 R&D Systems Novus Biologicals Tocris Bioscience ProteinSimple 	 Antibodies Proteins Assay Kits Small Molecules Lysates 	 100% Guarantee Frequently cited in high impact journals Rigorously tested in multiple applications

- R&D Systems, Inc., Minneapolis, MN, USA
- Novus Biologicals, LLC, Littleton, CO, USA
- ProteinSimple, San Jose, CA, USA
- R&D Systems, Europe, Ltd., Abingdon, OX, UK
- Tocris Bioscience, Bristol, UK
- R&D Systems China, Co, Ltd., Shanghai. CHINA

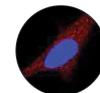
Building Innovation Opportunities

Learn more: bio-techne.com; rndsystems.com novusbio.com; tocris.com

 \mathcal{T} utophagy is the process of bulk protein degradation through an autophagosomal pathway. Components of the cytoplasm are sequestered and moved into the lysosome/ vacuole lumen, where they are broken down into their basic components and returned to the cytosol for reuse. Autophagy is important for differentiation, survival during nutrient deprivation and normal growth control, and is often defective in tumor cells. Autophagy is conserved from yeast to humans and is regulated by the Atg family of proteins.

Links to cancer, immunity and hypoxia have brought autophagy to the forefront of scientific studies in recent years. It now appears that autophagy's ubiquitous role in cellular maintenance may mean that it plays a role in almost all disease states.

Bio-Techne offers approximately 10,000 products to meet diverse autophagy research needs, including antibodies, proteins, assay kits, lysates and small molecules. Particularly, Novus Biologicals, now a Bio-Techne brand, has been a global leading manufacturer and supplier of autophagy research antibodies for more than 15 years.


The Most Cited Autophagy Antibodies

LC3 Antibodies from Novus have been cited almost 500 times in peer-reviewed journals.

NB100-2220


IHC, rat brain

NB100-2331 ICC, HeLa cells

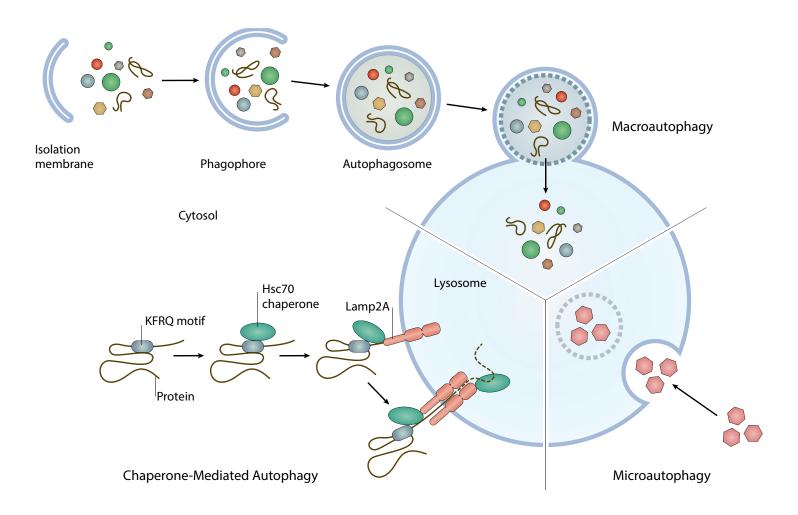
NB100-2331 WB, mouse ES cells

NB600-1384 FC, NTERA-2 cells

Table of Contents

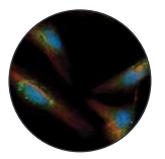
- **2** Introduction
- **3-7** Types of Autophagy
 - Macroautophagy
 - Microautophagy
 - Chaperone-Mediated Autophagy
 - Subcellular Structure-Specific Autophagy

8-12 Autophagy Processes

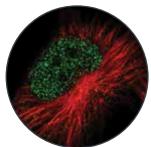

- Autophagy Initiation
- Autophagosome Formation
- Autolysosome Fusion
- Degradation and Recycling

13-16 Regulation of Autophagy

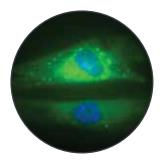
- Transcriptional Regulation of Autophagy Marker LC3
- Protein Regulators
- Small Molecule Modulators
- **17-19** Physiology and Pathology
 - Basal & Induced Autophagy
 - Autophagy in Immunity
 - Autophagy and Cancer
 - **20** Biochemistry Analysis of Autophagy
 - **20** Species and Application Key
 - **21** Recent Journal Citations
 - 22 Autophagy Pathways

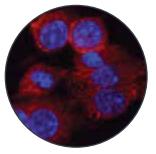

Types of Autophagy

There are three main types of autophagy in mammalian cells: macroautophagy, microautophagy and chaperonemediated autophagy.



Macroautophagy


Macroautophagy involves the creation of a phagophore, leading to the formation of the autophagosome which can consume whole organelles and deliver them to the lysosome for degradation. Different from microautophagy, double-membraned structures called autophagosomes enclose cellular material and then fuse with lysosomes.


LC3, NBP1-19167 ICC, HeLa cells (Novus)

ATG2B, NBP1-90732 ICC, U-251MG cells (Novus)

p62/SQSTM1, NBP1-48320 ICC, HeLa cells (Novus)

ATG4A, MAB4324 ICC, Raw 264.7 cells (R&D Systems)

LC3

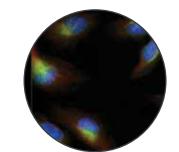
LC3 is a mammalian homolog of the yeast autophagy protein ATG8, originally identified as microtubule associated protein 1 light chain 3 (MAPLC3). LC3 is expressed as three splice variants (LC3A, LC3B and LC3C). Each of these splice variants exhibits different tissue distributions and is processed into two different post-translationally modified forms, LC3-I and LC3-II. LC3-I is found in the cytosol while LC3-II localizes to autophagasome membranes. LC3-II is the first mammalian protein identified that specifically associates with the autophagosome membranes. In addition to acting as a marker for autophagosomes, the conversion of LC3-I to LC3-II can be used to demonstrate the induction of autophagy.

ide (µM): LC3B **B-actir** ICC, HeLa cells WB, U87-MG cells FC, NTERA-2 cells IHC, glioblastoma tissue Product Type Catalog # Species Clonality Applications Brand Target NB100-2331 H, M, R + WB, SW, FC, ICC, IHC, IP Novus Biologicals Poly NBP1-19167 H, M, R + WB, SW, FC, ICC, IHC Poly Novus Biologicals LC3 NBP1-78964 WB, ICC, IHC H, M, R + Novus Biologicals Poly NBP2-24392 H, M, R + WB, IHC Novus Biologicals Poly WB, SW, ICC, IHC, IP NB100-2220 H, M, R + Poly Novus Biologicals Antibodies LC3B WB, SW, EM, FC, ICC, IHC NB600-1384 H, M, R + Novus Biologicals Poly NBP2-36664 WB, ICC, IHC Н Poly Novus Biologicals LC3C NB110-74806 WB, IHC Н Poly Novus Biologicals LC3 Antibody Pack NB910-40435 H. M Polv WB. IHC Novus Biologicals LC3/MAP1LC3A UL-430 **R&D** Systems LC3/MAP1LC3A Biotin UL-432 **R&D** Systems Proteins and LC3/MAP1LC3A Agarose UL-435 **R&D** Systems Peptides LC3/MAP1LC3A UL-455 **R&D** Systems Rhodamine110 LC3 NB100-2220PEP Novus Biologicals LC3B NBL1-12844 Н WB Novus Biologicals Cell Lysates LC3 NBP2-04906 н WB Novus Biologicals LC3 NBL1-12843 Н WB Novus Biologicals

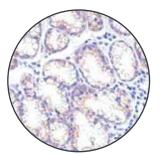
LC3B, NB600-1384 (Novus)

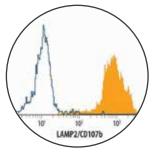
Simple Western Certified Antibodies

novusbio.com/proteinsimple; rndsystems.com/simplewestern

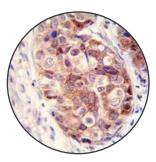


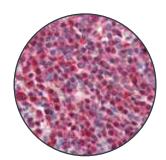
Microautophagy


Microautophagy involves the sequestering of cytosolic components at the surface of the lysosome. Compared to macroautophagy, microautophagy differs only in that the lysosome or vacuole sequesters proteins for degradation directly on their membrane surface. Therefore there are no autophagosome transport vesicles in microautophagy.

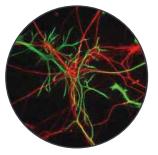

VPS41, NB100-2425 IHC, human kidney (Novus)

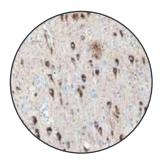
Endothelial Lipase, NB400-111 ICC, HeLa cells (Novus)


TSG101 (4A10), NB200-112 IHC, colon carcinoma (Novus)


LAMP2, MAB6228 FC, HeLa cells (R&D Systems)

Chaperone-Mediated Autophagy


Chaperone-mediated autophagy (CMA) involves the chaperone-dependent selection of soluble cytosolic proteins which are then targeted to lysosomes, before directly translocated across the lysosome membrane for degradation. The unique features of chaperone-mediated autophagy are the selectivity on the proteins that are degraded by this pathway and the direct shuttling of these proteins across the lysosomal membrane without the requirement for the formation of additional vesicles.

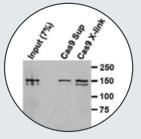

Hsp90A, NB120-2928 IHC, breast carcinoma (Novus)

Hsc70/ Hsp73, NBP1-97868 IHC, human spleen (Novus)

GFAP, NB300-141 ICC, rat neurons (Novus)



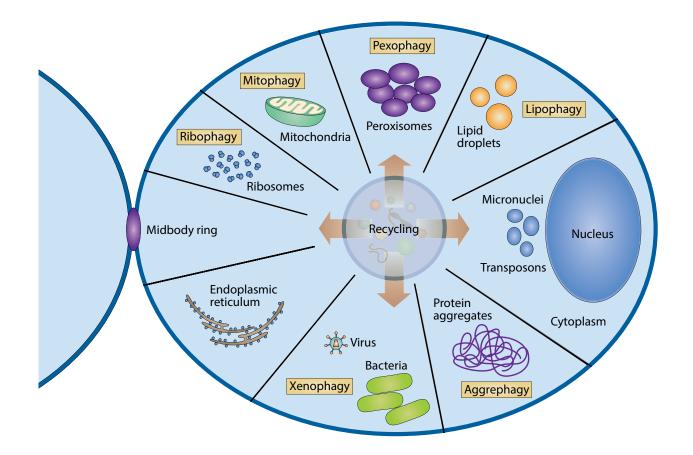
Tau, MAB3494 IHC, human Alzheimer's brain (R&D Systems)


Studying Gene Editing? Detect CRISPR/Cas9 complex directly and specifically

Learn more: novusbio.com/cas9

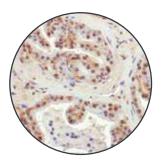
Cas9 Antibody (7A9-3A3), NBP2-36440

ICC, HeLa cells

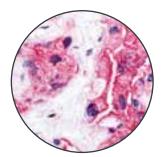

IP & WB, HEK293T cells

Components of CMA	Antibody Target	Catalog #	Species	Clonality	Applications	Brand
	Aldolase B	NBP2-15345	H, M, R	Poly	WB, ICC, IHC	Novus Biologicals
	Fos	AF7254	Н	Poly	WB	R&D Systems
	Eps8	NBP2-27300	Н	Mono	WB, IHC	Novus Biologicals
	Pax2	NB600-1455	Н	Poly	WB, ICC, IHC	Novus Biologicals
Substrates	MEF2D	NBP2-17261	Н	Poly	WB	Novus Biologicals
	RCAN1	NBP1-46852	Н, М	Poly	WB, IHC	Novus Biologicals
	α -synuclein	NBP1-26380	Н, М	Mono	WB, FC, ICC, IHC	Novus Biologicals
	Tau	MAB3494	Н	Mono	WB, IHC	R&D Systems
	Ubiquitin	AF7969	Н	Poly	WB	R&D Systems
	Hsp70	NBP1-77455	Н, М	Poly	SW, FC, ICC, IHC	Novus Biologicals
Chaperones	Hsp90 alpha	NBP1-77682	Н, М	Poly	ICC, IHC	Novus Biologicals
	Hsp90 beta	NBP1-77561	H, M, R	Poly	ICC, IHC	Novus Biologicals
Receptor	LAMP2A	NBP2-22217	Н	Mono	WB, SW, FC, ICC, IHC	Novus Biologicals
Pogulatore	GFAP	AF2594	H, R	Poly	WB, ICC	R&D Systems
Regulators	EF1 alpha	NBP1-55245	H, M, P +	Poly	WB	Novus Biologicals

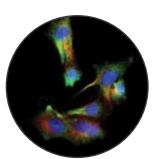
Components of Chaperone-Mediated Autophagy

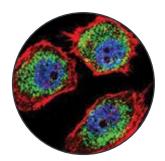

Subcellular Structure-Specific Autophagy

Depending on different subcellular structures that are specifically targeted for lysosomal degradation, autophagy processes include: mitophagy, ribophagy, lipophagy, pexophagy, aggrephagy and xenophagy.

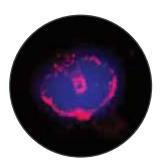


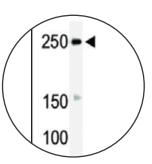
Mitophagy


Mitophagy is a process by which mitochondria are targeted for degradation via autophagy pathway. Mitophagy is mediated by ATG32 (in yeast) and NIP3-like protein X (NIX). Mitophagy is also regulated by PINK1 and Parkin protein.


BNIP3L, NBP1-78264 IHC, mouse prostate (Novus)

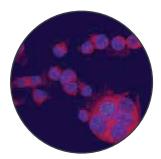
TERT, NB100-317 IHC, pancreatic carcinoma (Novus)


PINK1, NBP1-49678 ICC, HepG2 cells (Novus)

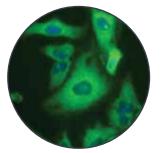

HIF-1β, NB300-525 ICC, U251 cells (Novus)

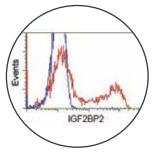
Ribophagy


Ribophagy is a type of macroautophagy that selectively degrades ribosomes or ribosome-RNA complexes. Doublemembraned autophagosomes enclose ribosomes, and then fuse with lysosomes for degradation.

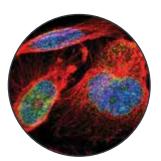

GABARAPL2, NBP2-36712 ICC, human WBCs (Novus)

ROS, NBP2-30090 WB, HL-60 cells (Novus)


DNAI1, NBP1-84465 ICC, A-431 cells (Novus)

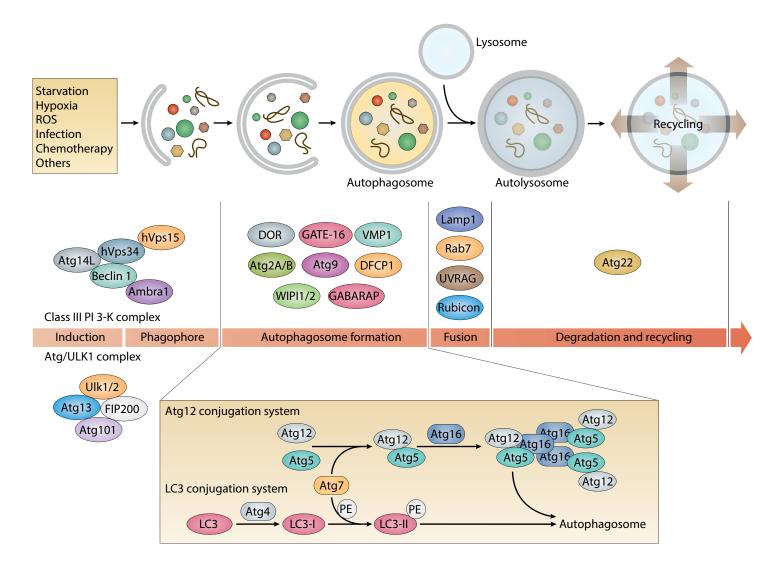

MUP-1, MAB6560 ICC, NTC-1469 cells (R&D Systems)

Aggrephagy

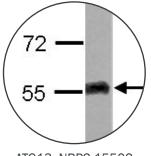

Protein aggregation is a continuous process in cells. Proteins that are damaged beyond repair can be degraded by the lysosome via autophagy. The selective degradation of protein aggregates by macroautophagy is called aggrephagy.

p62/SQSTM1, NBP1-42821 ICC, HeLa cells (Novus)

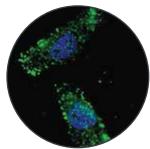
IGF2BP2, NBP2-02627 FC, HEK293T cells (Novus)


NUP62, NBP1-85091 ICC, U-251MG cells (Novus)

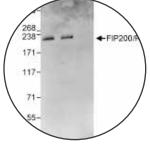
SAM68, NBP1-19151 IHC, colon carcinoma (Novus)


Autophagy Processes

Autophagy processes include autophagy initiation, autophagosome formation, autolysosome fusion, degradation and recycling. Major protein complexes involved in these processes include ATG1/ULK complex, PI 3 K complex, ATG8/Ubl conjugation, ATG12 Ubl conjugation, and ATG9 cycling system.



Autophagy Initiation

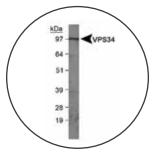

Autophagy initiation involves ATG1/ULK complex, PI3K complex, LC3 recruitment and p62 binding.

ATG13, NBP2-15502 WB, mouse brain (Novus)

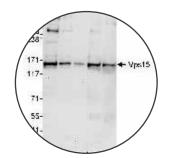
ULK1, NBP2-29922 ICC, U251 cells (Novus)

FIP200, NB100-77279 WB, HeLa cells (Novus)

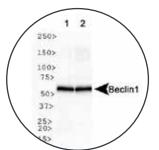
ATG101, NBP1-88877 IHC, human skeletal muscle (Novus)

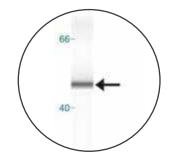

ATG1/ULK Complex

Target	Catalog #	Species	Clonality	Applications	Brand
ULK1	NBP2-24738	H, M, Pr	Poly	WB, IHC	Novus Biologicals
ULK2	NBP1-33136	Н, М	Poly	WB, ICC, IHC	Novus Biologicals
Phospho-ATG13 (S318)	NBP2-19127	Н	Poly	WB, ELISA	Novus Biologicals
FIP200	NB100-77279	Н, М	Poly	WB, IP	Novus Biologicals
ATG101	NBP1-88877	н	Poly	WB, IHC	Novus Biologicals


PI3K Complex

Beclin 1 and Beclin 2

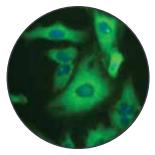

Beclin 1 is a subunit of the Class III PI 3 K complex. The binding of Beclin 1 to the pre-autophagosomal structure initiates the formation of the autophagosome and is therefore required for autophagy. Beclin 1 was the first mammalian gene to be identified that mediates autophagy; it also has tumor suppressor and antiviral functions. Beclin 2 is a novel coiled-coil protein related to Beclin 1. It is thought to interact with Bcl-2, an anti-apoptotic protein, and is believed to function in autophagy.


VPS34, NB110-87320 WB, HepG2 cells (Novus)

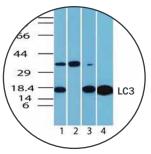
VPS15, NBP1-30463 WB, HeLa, 293T & NIH3T3 cells (Novus)

Beclin 1, NB500-249 WB, human & mouse brains (Novus)

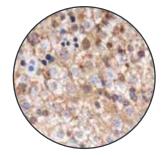
Beclin 2, NB110-60984 SW, HeLa cells (Novus)

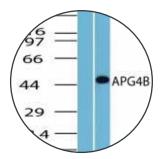


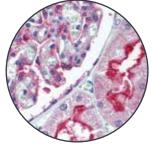
Antibody Target	Catalog #	Species	Clonality	Applications	Brand
ATG14L	NBP2-36445	H, M, R	Poly	WB, ELISA, ICC	Novus Biologicals
VPS34	NB110-87320	H, M, R +	Poly	WB, SW, ICC	Novus Biologicals
PIK3R4 (VPS15)	NBP1-30463	Н, М	Poly	WB, ICC, IP	Novus Biologicals
FINSR4 (VFS15)	MAB6104	Н	Mono	WB	R&D Systems
Ambra1	NBP1-07124	H, M, R	Poly	WB, ELISA, ICC, IHC	Novus Biologicals
	NB500-249	H, M, R	Poly	WB, SW, ICC, IHC, IP	Novus Biologicals
Beclin 1	AF5295	Н, М	Poly	WB, ICC	R&D Systems
	MAB5295	H, M, R	Mono	WB	R&D Systems
Beclin 2	NB110-60984	Н	Poly	WB, SW	Novus Biologicals

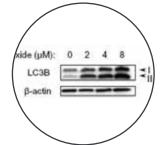

Autophagosome Formation

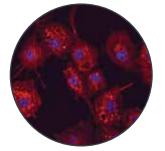
The formation of autophagosomes involves ATG12 Ubiquitin-like (UbI) conjugation and LC3/ATG8 conjugation.

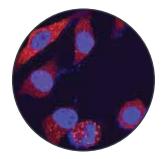

LC3/ATG8 Ubl conjugation


p62/ SQSTM1, NBP1-42821 ICC, HeLa cells (Novus)


LC3, NBP2-24394 WB, brain tissues (Novus)

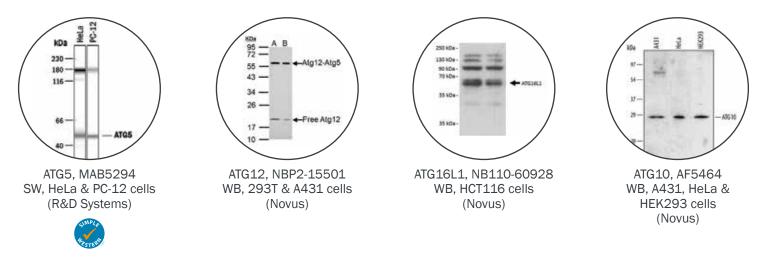

GABARAP, NBP1-97416 IHC, mouse liver (Novus)


ATG4B, NBP2-24735 WB, Jurkat cells (Novus)


ATG7, NBP1-40039 IHC, human kidney (Novus)

LC3B, NB600-1384 WB, U87-MG cells (Novus)

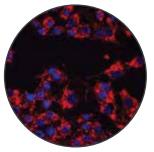
ATG7, MAB6608 ICC, Raw 264.7 cells (R&D Systems)

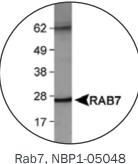


p62/SQSTM1, MAB8028 ICC, HeLa cells (R&D Systems)

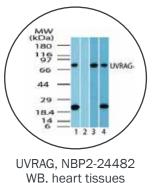
Antibody Target	Catalog #	Species	Clonality	Applications	Brand
	NBP1-42821	H, M, R	Poly	WB, ICC	Novus Biologicals
p62/ SQSTM1	MAB8028	H, M, R	Mono	WB, SW, ICC	R&D Systems
p02/ 3Q31MI1	BAM8028	H, M, R	Mono	ICC	R&D Systems
	IC8028G	H, M, R	Mono	ICC	R&D Systems
LC3	NB100-2220	H, M, R +	Poly	WB, SW, ICC, IHC, IP	Novus Biologicals
GABARAP	NBP1-97416	Μ	Poly	IHC	Novus Biologicals
ATG4B	NBP2-24709	H, M, R	Poly	WB, IHC	Novus Biologicals
AIG4D	MAB5279	Н	Mono	WB, IP	R&D Systems
ATG4A	AF4324	Н	Poly	WB, IP	R&D Systems
AIG4A	MAB4324	Н, М	Mono	WB, ICC, IP	R&D Systems
ATG7	NBP1-95872	H, M, R	Mono	WB, ICC	Novus Biologicals
AIGT	MAB6608	Н, М	Mono	WB, SW, ICC, IHC	R&D Systems
LC3B	NB600-1384	H, M, R +	Poly	WB, SW, EM, FC, ICC, IHC	Novus Biologicals
ATG3	AF5450	H, M, R	Poly	WB, ICC	R&D Systems

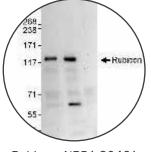
ATG12 Ubl conjugation


ATG5 complexes with ATG12 and is required for the formation of the autophagosome. ATG5 is heavily expressed in dead tumor cells, making it a marker for successful anti-cancer therapies. The ATG12-ATG5-ATG16L complex is essential for the elongation of autophagic isolation membranes.


Antibody	Catalog #	Species	Clonality	Applications	Brand
ATG5	NB110-53818	H, M, R +	Poly	WB, SW, ICC, IHC, IP	Novus Biologicals
AIGS	MAB5294	H, M, R	Mono	WB, SW, IHC	R&D Systems
ATG12	NBP2-15501	H, M, R	Poly	WB, ICC, IHC	Novus Biologicals
AIGIZ	MAB6807	Н, М	Mono	WB, ICC	R&D Systems
ATG16L1	NB110-60928	H, M, R +	Poly	WB, EM, IHC	Novus Biologicals
ATG10	AF5464	Н	Poly	WB	R&D Systems

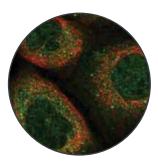
Autolysosome Fusion


The direct fusion of autophagosomes with lysosomes produces autolysosomes. The proteins involved in this process include LAMP1, Rab7, UVRAG and Rubicon.

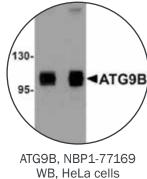

LAMP1, AF4320 ICC, RAW 264.7 cells (Novus)

WB, NIH 3T3 cells (Novus)

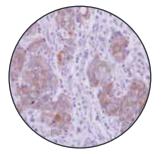
(Novus)


Rubicon, NBP1-30461 WB, HeLa cells (Novus)

Learn more about Autophagy Research Tools from Bio-Techne at: Novus Biologicals: novusbio.com/research-areas/autophagy R&D Systems: rndsystems.com/autophagy Tocris Bioscience: tocris.com/autophagy

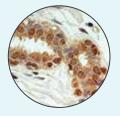

Degradation and Recycling

ATG9 cycling system

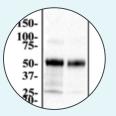

ATG9 is the only integral membrane protein required for autophagosome formation, and is considered a membrane carrier in autophagy-related pathways. It is regulated via ATG1 and is found migrating between mitochondria and the pre-autophagosomal structure.

ATG2A, NBP1-83009 ICC, A-431 cells (Novus)

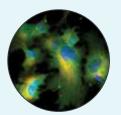
WB, HeLa cells (Novus)

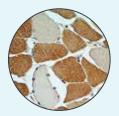


WIPI 2, NBP2-20906 IHC, breast cancer (Novus)



ATG9A, NB110-56893 IHC, mouse intestine (Novus)


As a leading supplier of Autophagy research antibodies, Bio-Techne always stays at the forefront of this exciting research area. Here are a few examples of newly developed Autophagy-related antibodies:

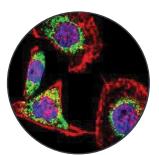

NALP6, NBP2-31372 IHC, normal breast tissue (Novus)

PPAR-γ NBP2-22106 WB, adipose & adrenal (Novus)

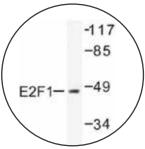
MCT1, NBP1-59656 ICC, HeLa cells (Novus)

TREX1, NBP2-29617 IHC, skeletal muscle (Novus)

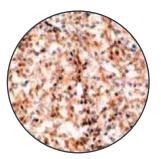
More Conjugated Antibodies for Superior Multicolor Analysis More targets (3000+ mAbs)


More channels (14+ colors)

Learn more: novusbio.com/conjugatedantibodies


Regulation of Autophagy

Transcriptional regulation of autophagosome marker LC3

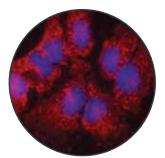

As an autophagosome marker, LC3 is considered the only well-characterized protein that is specifically localized to autophagic structures, throughout the process from phagophore to lysosomal degradation. At the transcriptional level, there are several factors that regulate (either up-regulate or down-regulate) the expression of LC3.

SREBP2, NB100-74543 ICC, HeLa cells (Novus)

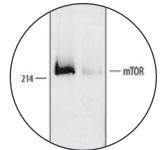
E2F1, NB100-92030 WB, HeLa cells (Novus)

TFEB, NB100-1030 IHC, human kidney cancer (Novus)

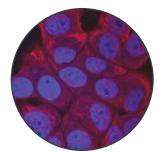
CHOP, MAB7224 ICC, Jurkat cells (R&D Systems)

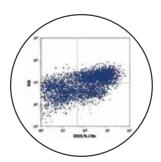

Transcription Factor	Regulation of LC3	Autophagy Effect	Catalog #	Species	Clonality	Applications	Brand
ATF4	Up-regulation	Increased	MAB7218	Н	Mono	WB, ICC	R&D Systems
AII 4			NB100-81802	Н	Poly	WB, IHC	Novus Biologicals
СНОР	Up-regulation	Increased	NB600-1335	H, M, R +	Mono	WB, SW, GS, ICC, IHC, IP	Novus Biologicals
			MAB7224	Н	Mono	ICC	R&D Systems
E2F1	Up-regulation	Increased	NB600-210	Н, М	Mono	WB, ICC, IHC, IP	Novus Biologicals
			AF4825	Н	Poly	WB, IHC	R&D Systems
FOX01	Up-regulation	Increased	NBP2-31376	Н	Mono	WB, SW, ICC, IHC	Novus Biologicals
			MAB5939	Н	Mono	ICC	R&D Systems
GATA1	Up-regulation	Increased	AF1779	Н	Poly	WB	R&D Systems
GAIAL			MAB1779	Н	Mono	WB, ICC	R&D Systems
	Up-regulation	Increased	AF2670	Н	Poly	WB	R&D Systems
JUN			NB110-55569	H, M, R	Mono	WB, FC, ICC, IHC, IP	Novus Biologicals
SREBP2	Up-regulation	Increased	AF7119	Н	Poly	WB, CHIP, ICC	R&D Systems
SREDP2			MAB7119	Н	Mono	WB, ICC, IHC	R&D Systems
TFEB	Up-regulation	Increased	NB100-1030	Н	Poly	WB, IHC, ELISA	Novus Biologicals
IFED			NBP2-12758	Н	Poly	WB, IP	Novus Biologicals
ZKSCAN3	Down-regulation	Decreased	NBP1-31566	Н	Poly	WB, ICC, IHC	Novus Biologicals

Protein Regulators


In addition to the transcriptional regulation of autophagy via LC3, there are many other proteins such as mTOR that regulate autophagy pathways.

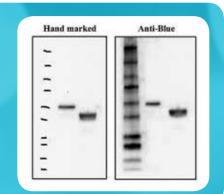
mTOR


mTOR (mammalian Target of Rapamycin) is an evolutionarily-conserved protein kinase. As a central regulator of cell growth, mTOR plays a key role at the interface of the pathways that coordinate regulation of the balance between cell growth and autophagy in response to nutritional status, growth factor and stress signals.


mTOR, NB100-240 ICC, HeLa cells (Novus)

mTOR (pSer2448), AF1665 WB, DU145 cells (Novus)

mTOR, MAB1537 ICC, MCF-7 cells (R&D Systems)

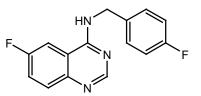


mTOR (w/ PE), IC1537P FC, human PBMCs (R&D Systems)

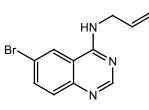
Negative Regulators of Autophagy

Target	Catalog #	Species	Clonality	Applications	Brand
mTOR	AF15371	H, M, R	Poly	WB, IP	R&D Systems
PI 3-kinase p110	MAB2686	Н	Mono	WB	R&D Systems
PI 3-kinase p85	MAB2998	H, M, R	Mono	WB	R&D Systems
S6K	NBP2-23649	H, M, R +	Poly	WB, ELISA	Novus Biologicals
SON	MAB8962	H, M, R	Mono	WB, IHC, FC	R&D Systems
Phospho-S6K (T421/S424)	AF8965	H, M, R	Poly	WB, SW	R&D Systems
Phospho-S6K (T389)	AF8963	H, M, R	Poly	WB	R&D Systems
p38	NB100-56665	Н	Poly	WB, IHC	Novus Biologicals
p38 alpha	AF8691	H, M, R	Poly	WB, SW, IHC	R&D Systems
Phospho-p38 (T180/Y182)	AF869	H, M, R	Poly	WB, SW, IHC	R&D Systems

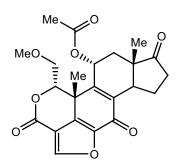
Visualize markers and target protein simultaneously using Blue Marker Antibody (Catalog # NBP2-33376H)

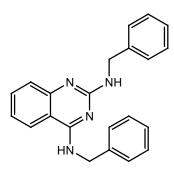


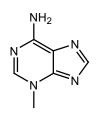
Positive Regulators of Autophagy


Target	Catalog #	Species	Clonality	Applications	Brand
Beclin 1	NB110-87318	H, M, Ca +	Poly	WB, SW, ICC, IHC, IP	Novus Biologicals
Decim 1	NB500-266	Н, М	Poly	WB, ICC	Novus Biologicals
VPS34 (Class III PI3K)	NB110-87320	H, M, R +	Poly	WB, SW, ICC	Novus Biologicals
ERK1	NB100-56376	Н	Poly	WB, IHC	Novus Biologicals
TRAIL	NB100-56518	Н	Mono	WB, IHC	Novus Biologicals
JNK (pan-specific)	AF1387	H, M, R	Poly	WB, IHC	R&D Systems
JNK2	NB600-1297	Н	Poly	WB	Novus Biologicals
Phospho-JNK (T183/Y185)	AF1205	H, M, R	Poly	WB, SW, IHC	R&D Systems
DAPK3	AF5290	Н	Poly	WB	R&D Systems
BNIP3	NB100-56150	H, R, Ch +	Poly	WB, IHC, IP	Novus Biologicals
TFEB	NB100-1030	Н	Poly	WB, IHC, ELISA	Novus Biologicals
IFED	NB100-93447	H, M, R +	Poly	WB, ELISA	Novus Biologicals

Modulate Autophagy with Small Molecules


Many small molecules can induce or inhibit autophagy via a number of different targets such as mTOR, p97, and lysosomal proteases.


Spautin 1 (Tocris, Cat.# 5197) USP10 and USP13 inhibitor; inhibits autophagy


SMER 28 (Tocris, Cat.# 4297) Positive regulator of autophagy

Wortmannin (Tocris, Cat.# 1232) Potent, irreversible inhibitor of PI 3-kinase

DBeQ (Tocris, Cat.# 4417) Selective and reversible p97 inhibitor

3-Methyladenine (Tocris, Cat.# 3977) Class III PI 3-kinase inhibitor; also inhibits autophagy

Small Molecules for Autophagy Inhibition

Name	Catalog #	Description	Brand
Bafilomycin A1	1334	H⁺-ATPase (vacuolar) inhibitor	Tocris
(±)-Bay K 8644	1544	Ca ²⁺ -channel activator (L-type)	Tocris
Chloroquine diphosphate	4109	Antimalarial; inhibits apoptosis and autophagy	Tocris
Concanamycin A	2656	H⁺-ATPase (vacuolar) inhibitor	Tocris
DBeQ	4417	p97 inhibitor; blocks autophagosome maturation	Tocris
E 64d	4545	Cathepsin inhibitor; interferes with autolysosomal digestion	Tocris
GW 4064	2473	FXR agonist; suppresses autophagy in nutrient-deprived hepatocytes	Tocris
LY 294002 hydrochloride	1130	Selective PI 3-kinase inhibitor; inhibits autophagic sequestration	Tocris
3-Methyladenine	3977	Class III PI 3-kinase inhibitor; also inhibits autophagy	Tocris
Nocodazole	1228	Microtubule inhibitor; inhibits autophagosome-lysosome fusion	Tocris
Pepstatin A	1190	Aspartic protease inhibitor; interferes with autolysosomal digestion	Tocris
Spautin 1	5197	USP10 and USP13 inhibitor; inhibits autophagy	Tocris
Wortmannin	1232	Potent, irreversible inhibitor of PI 3-kinase; also inhibitor of PLK1	Tocris
Xanthohumol	4686	Valosin-containing protein (VCP) inhibitor	Tocris

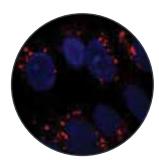
Small Molecules for Autophagy Induction

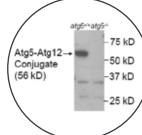
Name	Catalog #	Description	Brand
Amiodarone hydrochloride	4095	Causes mitochondrial fragmentation; stimulates autophagy	Tocris
Brefeldin A	1231	Disrupts protein translocation to Golgi	Tocris
Dexamethasone	1126	Anti-inflammatory glucocorticoid	Tocris
Dorsomorphin dihydrochloride	3093	Induces autophagy via an AMPK inhibition-independent mechanism	Tocris
EB 1089	3993	Vitamin D receptor (VDR) agonist	Tocris
FK 866 hydrochloride	4808	Non-competitive and potent NAMPT inhibitor; induces apoptosis and autophagy	Tocris
GF 109203X	0741	Protein kinase C inhibitor	Tocris
L-690,330	0681	Induces autophagy independently of mTOR inhibition	Tocris
NF 449	1391	Highly selective P2X1 antagonist	Tocris
Nimodipine	0600	Ca ²⁺ channel blocker (L-type)	Tocris
3-Nitropropionic acid	4849	Irreversible mitochondrial respiratory complex II inhibitor	Tocris
PI 103 hydrochloride	2930	Inhibitor of PI 3-kinase, mTOR and DNA-PK	Tocris
Rapamycin	1292	mTOR inhibitor; immunosuppressant	Tocris
Rilmenidine hemifumarate	0790	α 2-adrenergic agonist; also I1-imidazoline binding site selective ligand	Tocris
Rottlerin	1610	Reported PKCS inhibitor	Tocris
Salirasib	4989	Ras inhibitor; also induces autophagy	Tocris
SMER 28	4297	Positive regulator of autophagy	Tocris
Thapsigargin	1138	Potent inhibitor of SERCA ATPase	Tocris
Torin 1	4247	Potent and selective mTOR inhibitor	Tocris
Tunicamycin	3516	Causes ER stress; can be used to induce autophagy	Tocris
Valproic acid, sodium salt	2815	Reduces inositol levels; induces autophagy	Tocris
Verapamil hydrochloride	0654	Ca ²⁺ channel blocker (L-type)	Tocris
Salirasib	4989	Ras inhibitor; also induces autophagy	Tocris

Physiology and Pathology

Basal Autophagy and Induced Autophagy

Autophagy has many essential functions in cells and tissues. Basal autophagy is essential to remove damaged proteins and organelles, reduce ER stress, and limit the production of reactive oxygen species (ROS). Induced autophagy is important to provide nutrients and building blocks during periods of starvation. Autophagy is essential during the development and differentiation of many cell types, as well as in maintaining tissue homeostasis. Autophagy also plays an essential role during immunity. It is not surprising that dysregulation of autophagy has been implicated in the pathology of many diseases including cancer.

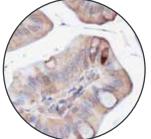


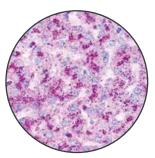

tocris.com/bulkquantities; novusbio.com/bulk

ELISAs

Autophagy in Immunity

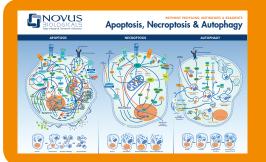
Autophagy is well integrated into immune regulation systems. Autophagy facilitates the recognition of infected cells by innate immune effectors. For example, although ATG3, ATG5 and ATG7 were found dispensable to be for the development of thymocytes, their absence impairs the survival and proliferation of peripheral T cells.




ICC, SH-SY5Y cells

WB, mouse ES cells

ATG5,NB110-53818 (Novus)

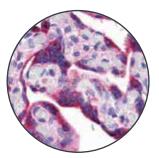


IHC, human hepatocytes

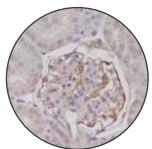
Immune Functions	Target	Catalog #	Species	Clonality	Applications	Brand
	SQSTM1	NBP1-48320	H, M, R	Poly	WB, SW, ICC, IHC	Novus Biologicals
Elimination of microorganisms	NOD2	NB100-524	Н, М	Mono	WB, ICC, IHC, IP	Novus Biologicals
meroorganisms	ATG16L1	NB110-60928	H, M, R +	Poly	WB, EM, IHC	Novus Biologicals
	ATG5	NB110-53818	H, M, R +	Poly	WB, SW, ICC, IHC, IP	Novus Biologicals
	ATG12	NBP2-15501	H, M, R	Poly	WB, ICC, IHC	Novus Biologicals
Control of pro- inflammatory signaling	AIG12	MAB6807	Н, М	Mono	WB, ICC	R&D Systems
initiation y signaling		NBP2-12446	H, M, R +	Poly	WB, IHC	Novus Biologicals
	NLRP3	MAB7578	Н, М	Mono	WB, FC, ICC	R&D Systems
	DICER	NB200-591	Н, М	Poly	WB, IHC	Novus Biologicals
	IL-1α	AF-200-NA	Н	Poly	WB, B/N, ICC	R&D Systems
Regulation of	11-10	AF-400-NA	М	Poly	WB, B/N, IHC	R&D Systems
adaptive immunity		AF-401-NA	М	Poly	WB, B/N, ICC, IHC	R&D Systems
	IL-1β	AF-201-NA	н	Poly	WB, B/N, ICC	R&D Systems
		NB600-633	H, M, Ba +	Poly	WB, ELISA, EM, IHC, IP	Novus Biologicals
	HMGB1	NB100-2322	H, M, R +	Poly	WB, SW, FC, ICC, IHC	Novus Biologicals
	HIVIGDI	AF1690	Н, М	Poly	WB	R&D Systems
Secretion of immune mediators	NOX2	NBP1-41012	Н	Mono	WB, ELISA, FC, ICC, IHC	Novus Biologicals
initiale filediators	TRAF6	AF3284	Н	Poly	WB	R&D Systems
	TNAFU	NB100-56436	Н, М	Poly	WB	Novus Biologicals

Performing Cell Death Assays?

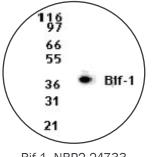
Find our updated poster for Autophagy, Apoptosis, & Necroptosis

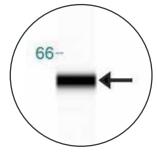

novusbio.com/cell-death-poster

Autophagy and Cancer


The role of autophagy in cancer is complex. During tumor initiation, autophagy acts as a barrier to cell transformation by reducing cell proliferation and DNA damage. However, during tumor progression, high levels of autophagy increase cancer cell survival. Cancers subsequently become dependent on autophagy to sustain cell growth.

Autophagy Proteins as Tumor Suppressors


Several lines of evidence have supported the view of autophagy as a novel mechanism of tumor suppression. Several autophagy proteins such as Beclin 1, Bif-1 and UVRAG have been found to function as tumor suppressors. Many anticancer agents such as tamoxifen and rapamycin, acting as potent inducers of autophagy, further support the prevailing view of autophagy as a mechanism of tumor suppression.


ATG5, NBP1-59085 IHC, human placenta (Novus)

Beclin 1, NB500-249 IHC, mouse kidney (Novus)

Bif-1, NBP2-24733 WB, Jurkat cells (Novus)

Beclin 1, NB110-87318 SW, HeLa cells (Novus)

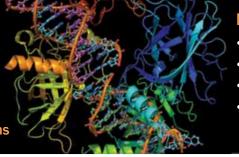
Custom Solutions

The same competencies and experience that are behind the trusted brands of Bio-Techne, R&D Systems, Novus Biologicals, Tocris Bioscience and ProteinSimple can be leveraged to develop custom solutions for your unique research demands. A team of research scientists, manufacturing engineers and project management staff will ensure your custom solution is delivered successfully.

- Recombinant Proteins
- Antibodies
- ELISAs
- Luminex Assays
- Biomarker Detection
- BioactivityTesting
- Custom Synthesis and Analysis of Small Molecules

Learn more: rndsystems.com/custom; tocris.com/tocriscustomsynthesis

Biochemical Analysis of Autophagy


Product Type	Product Name	Catalog #	Brand
	ATG7 isoform 1	E-318	R&D Systems*
Enzymes	ATG4B	E-400	R&D Systems
	ATG3	E2-670	R&D Systems
	pro-GABARAPL1	UL-400	R&D Systems
	GABARAP	UL-410	R&D Systems
	HA-GABARAP	UL-440	R&D Systems
	GABARAP Biotin	UL-412	R&D Systems
	GABARAP Fluorescein	UL-414	R&D Systems
	GABARAP Agarose	UL-415	R&D Systems
Proteins	GABARAP Rhodamine	UL-416	R&D Systems
	GATE16	UL-420	R&D Systems
	GATE16 Rhodamine	UL-426	R&D Systems
	LC3/MAP1LC3A	UL-430	R&D Systems
	LC3/MAP1LC3A Biotin	UL-432	R&D Systems
	LC3/MAP1LC3A Agarose	UL-435	R&D Systems
	LC3/MAP1LC3A Rhodamine110	UL-455	R&D Systems
	ATG5 peptide	NB110-53818PEP	Novus Biologicals
	ATG16L1	NB110-60928PEP	Novus Biologicals
Peptides	ATG9A	NB110-56893PEP	Novus Biologicals
replices	Beclin 1	NB500-249PEP	Novus Biologicals
	LC3B	NB100-2220PEP	Novus Biologicals
	p62/SQSTM1	NBP1-42821PEP	Novus Biologicals

* R&D Systems Ubiquitin and Ubiquitin-related products are powered by Boston Biochem.

Select Proteins That Meet Your Needs

R&D Systems Proteins

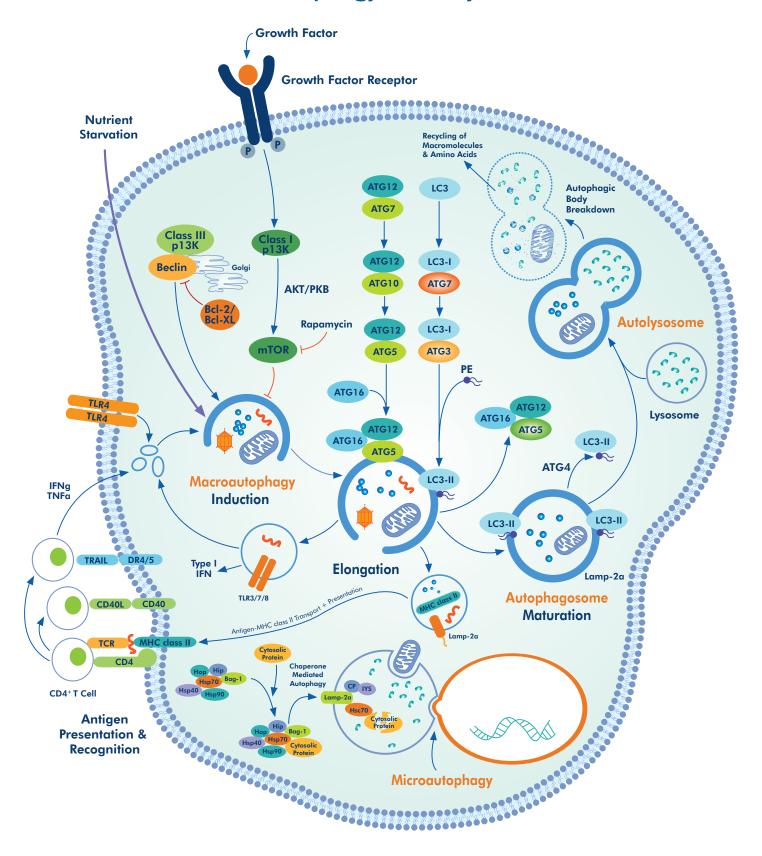
- High purity for trusted results
- Low endotoxin level (<0.1 EU/ μ g)
- Large selection (4,800+ proteins)
- Most referenced protein manufacturer
- Learn more: rndsystems.com/Proteins

Novus Bioactive Proteins

- Purity >90%
- Endotoxin level <1 EU/µg
- Biological activity guaranteed
- Competitive pricing
- Learn more: novusbio.com/bioactive

Species Key:

H - Human, M - Mouse, R - Rat, B - Bovine, Ba - Bacteria, Ca - Canine, Ch - Chicken, P - Porcine, Pr - Primate, Ra - Rabbit, X - Xenopus


Application Key:

B/N - Blocking/ Neutralization, CHIP - Chromatin Immunoprecipitation, EM - Electron Microscope, FC - Flow Cytometry, GS - Gel Shift ICC - Immunocytochemistry, IHC - Immunohistochemistry, IP - Immunoprecipitation, SW - Simple Western, WB - Western Blot

A Glimpse of Recent Citations from High Impact Journals

1	[LC3, NB100-2220] Wlodarska M, Thaiss CA, Nowarski R et al. NLRP6 Inflammasome Orchestrates the Coloni Host-Microbial Interface by Regulating Goblet Cell Mucus Secretion. <i>Cell.</i> 2014, PMID: 24581500. (WB, Mouse)
2	[LC3, NB100-2220] Chin RM, Fu X, Pai MY et al. The metabolite alpha-ketoglutarate extends lifespan by inhibiting ATP synthase and TOR. <i>Nature</i> . 2014, PMID: 24828042. (WB, Human)
3	[LC3, NB100-2220] Zavodszky E, Seaman MN, Moreau K et al. Mutation in VPS35 associated with Parkinson's disease impairs WASH complex association and inhibits autophagy. <i>Nature Commun. 2014</i> , PMID: 24819384. (WB,Human)
4	[LC3, NB100-2220] Fang EF, Scheibye-Knudsen M, Brace LE et al. Defective Mitophagy in XPA via PARP-1 Hyperactivation and NAD(+)/SIRT1 Reduction. <i>Cell.</i> 2014, PMID: 24813611. (WB, ICC/Human, Mouse, Rat)
5	[LC3, NB100-2220] Bingol B, Tea JS, Phu L et al. The mitochondrial deubiquitinase USP30 opposes parkin- mediated mitophagy. <i>Nature</i> . 2014, PMID: 24896179. (WB, ICC/Human)
6	[LC3, NB100-2220] Shanware NP, Bray K, Eng CH et al. Glutamine deprivation stimulates mTOR-JNK-dependent chemokine secretion. <i>Nature Commun. 2014</i> , PMID: 25254627.
7	[LC3B, NB600-1384] Meunier E, Dick MS, Dreier RF et al. Caspase-11 activation requires lysis of pathogen- containing vacuoles by IFN-induced GTPases. <i>Nature 2014</i> , PMID: 24739961. (ICC/Mouse)
8	[LC3B, NB600-1384] Lee JM, Wagner M, Xiao R et al. Nutrient-sensing nuclear receptors coordinate autophagy. <i>Nature</i> . 2014, PMID: 25383539.
9	[LC3, NB100-2331] Zhang L, Chen X, Sharma P et al. HACE1-dependent protein degradation provides cardiac protection in response to haemodynamic stress. <i>Nature Commun.</i> 2014. PMID: 24614889. (WB, Mouse)
10	[ATG5, NB110-53818] Bejarano E, Yuste A, Patel B et al. Connexins modulate autophagosome biogenesis. Nature.Cell Biol. 2014, PMID: 24705551. (WB, IP, Mouse)
11	[ATG5, NB110-53818] Fang EF, Scheibye-Knudsen M, Brace LE et al. Defective Mitophagy in XPA via PARP-1 Hyper activation and NAD(+)/SIRT1 Reduction. <i>Cell.</i> 2014, PMID: 24813611. (WB, Mouse)
12	[Beclin 1, NB500-249] Pampliega O, Orhon I, Patel B et al. Functional interaction between autophagy and ciliogenesis. <i>Nature</i> . 2013, PMID: 24089209. (ICC/Mouse)
13	[ATF6, NBP1-40256] Shao M, Shan B, Liu Y et al. Hepatic IRE1alpha regulates fasting-induced metabolic adaptive programs through the XBP1s-PPARalpha axis signalling. <i>Nature Commun. 2014</i> , PMID: 24670948. (WB, Mouse)
14	[p62/SQSTM1, NBP1-49954] Moreau K, Fleming A, Imarisio S et al. PICALM modulates autophagy activity and tau accumulation. <i>Nature Commun. 2014</i> , PMID: 25241929.
15	[IL-1β, AF-401-NA] Zhong Z, Zhai Y, Liang S et al. TRPM2 links oxidative stress to NLRP3 inflammasome activation. <i>Nature Commun.</i> 2013, PMID: 23511475

Find Pathways to Success in Autophagy Research Autophagy Pathways

Find us at novusbio.com; rndsystems.com; tocris.com

COMPREHENSIVE SOLUTIONS FOR: Cellular Response to Stress

Autophagy

Hypoxia Apoptosis Necroptosis Unfolded Protein Response

bio	techne	bio-techne.com					
bio	Building Innovation Opportunities	bio-techne.com info@bio-techne.com techsupport@bio-techne.com	North America TEL 800 343 7475	Europe • Middle East • Africa TEL +44 (0)1235 529449	China info.cn@bio-techne.com TEL +86 (21) 52380373	Rest of World bio-techne.com/find-us/distributors TEL +1 612 379 2956	
Bio-Techne is a trading name for R&D Systems, Novus Biologicals, and Tocris.							