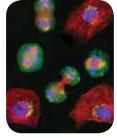
CATALOG OF ANTIBODIES FOR

DNA REPAIR

Table of Contents


Non-Homologous End Joining2
Homologous Recombination 3-4
Checkpoint Signaling & Double Strand Break Repair 5-7
Base Excision Repair8
Nucleotide Excision9
Mismatch Repair 10
DNA Polymerase11
Direct Reversal of Damage 11
Longevity 12
Syndromes Linked to DNA Repair Defects
In the News14

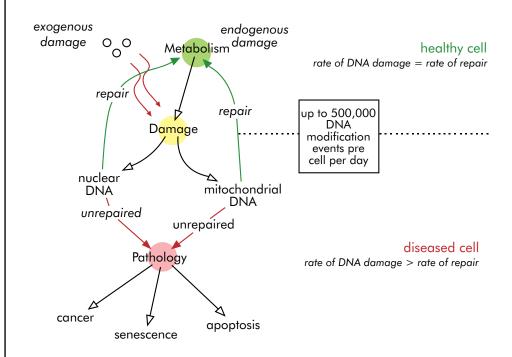
Application Key

- ChIP Chromatin Immunoprecipitation
 ELISA Enzyme-linked Immunosorbent Assay
 FACS - Fluorescent Activated Cell Sorting
 IA - In vitro Assay
 ICC - Immunocytochemistry
 IF - Immunofluorescence
 IHC - Immunohistochemistry
 IHC-Fr - Immunohistochemistry Frozen
 IHC-P - Immunohistochemistry Paraffin
 IP - Immunoprecipitation
 PEP-ELISA - Peptide ELISA
- RNAi RNAi Validation
- WB Western Blot

Reactivity Key

Am - Amphibian	Hu - Human
Bv - Bovine	Mk - Monkey
Ca - Canine	Mu - Mouse
Ce - C. elegans	Rb - Rabbit
Ch - Chicken	Rt - Rat
Dr - Drosophila	Vi - Virus
Eq - Equine	Xp - Xenopus
Ft - Ferret	Ye - Yeast
Ha - Hamster	Ze - Zebrafish

Cover Image Dividing HeLa Cells

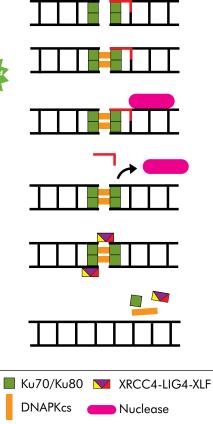

DNA Repair

DNA repair refers to a collection of processes by which a cell identifies and corrects damage to the DNA molecules that encode its genome. In human cells, both normal metabolic activities and environmental factors (such as UV light) can cause DNA damage, resulting in up to half a million individual molecular lesions per cell per day. Many of these lesions cause structural damage to the DNA molecule and can alter or eliminate the cell's ability to transcribe the gene that the affected DNA encodes. Other lesions induce potentially harmful mutations in the cell's genome, which affect the survival of its daughter cells after it undergoes mitosis. Consequently, the DNA repair process must be constantly active so that it can respond quickly to any damage in the DNA structure.

The rate of DNA repair is dependent on many factors, including the cell type, the age of the cell, and the extracellular environment. A cell that has accumulated a large amount of DNA damage, or one that no longer effectively repairs damage incurred to its DNA, can enter one of three possible states:

- 1. An irreversible state of dormancy, known as senescence.
- 2. Cell suicide, also known as apoptosis or programmed cell death.
- 3. Unregulated cell division, which can lead to the formation of a cancerous tumor.

The DNA repair ability of a cell preserves the integrity of its genome and thus is crucial to its normal functioning and that of the organism. Many genes that were initially shown to influence lifespan, in fact, relate to DNA damage repair and protection. Failure to correct molecular lesions in cells that form gametes can introduce mutations into the genomes of the offspring and thus influence the rate of evolution.



TOLL FREE: 888.506.6887 • PHONE: 303.730.1950

Non-Homologous End Joining Antibodies

Non-homologous end joining (NHEJ) is a mechanism that can be used to repair double-strand breaks in DNA. NHEJ involves directly ligating break ends without the need for a homologous template, whereas homologous recombination requires a homologous sequence to guide repair. NHEJ is evolutionarily conserved throughout all kingdoms of life and is the predominant double-strand break repair pathway in many organisms, including higher eukaryotes such as human and mouse. NHEJ typically utilizes short homologous DNA sequences, termed microhomologies, to guide repair. Microhomologies, located in the single-stranded overhangs often present on the ends of double-strand breaks, are used to promote restorative repair. When these overhangs are compatible, NHEJ almost always repairs the break accurately with no sequence loss. Imprecise repair leading to loss of nucleotides can also occur but is much less common. Nevertheless, NHEJ is often referred to as an "error-prone" repair mechanism. NHEJ can lead to translocations when organisms are subjected to large doses of radiation that cause many breaks per cell. Additionally, the NHEJ pathway is responsible for fusing the ends of chromosomes that have undergone telomere failure. These translocations may result in incorrect gene regulation and can lead to pathological conditions.

Catalog#	Product	Host	Туре	Application	Species
NB100-183	Artemis	Rabbit	Polyclonal	WB	Ни
NB100-542	Artemis	Rabbit	Polyclonal	WB	Hu
NB100-78405	Artemis	Rabbit	Polyclonal	IF, WB	Hu Feat
NB110-57379	DNA Ligase IV	Rabbit	Polyclonal	ELISA, WB, IHC-P	Hu
H00003981-MO2	DNA Ligase IV (2D2)	Mouse	Monoclonal	ELISA, WB	Hu
NBP1-02456	DNA PKcs [Thr2609]	Rabbit	Polyclonal	ELISA, IF, IHC-P, IP, WB	Ca, Ch, Eq, Hu, Mu, Rt
H00005591-M02	DNA PKcs (1B9)	Mouse	Monoclonal	WB, ELISA, IHC-P	Ни
NB110-56935	DNA PKcs (Y393)	Rabbit	Monoclonal	WB, ICC, IHC	Hu
NB100-336	Ku70	Mouse	Polyclonal	WB	Ни
NB100-1915	Ku70 (N3H10)	Mouse	Monoclonal	IHC-P, IF , IP , WB	Ha, Hu, Mu, Mk, Xp
NB100-335	Ku70	Rabbit	Polyclonal	WB	Нυ
NB100-349	Ku70 (1.5)	Mouse	Monoclonal	WB	Hu
NB100-103	Ku80 (5D5.8)	Mouse	Monoclonal	WB	Ни
NB100-337	Ku80 (9403)	Mouse	Monoclonal	WB	Hu
NB100-503	Ku80	Rabbit	Polyclonal	WB	Hu, Mu, Ha, Rt
NB100-508	Ku80	Rabbit	Polyclonal	WB	Hu, Ha, Mu, Rt
NB100-2840	Ku80	Goat	Polyclonal	PEP-ELISA, WB	Ни
NBP1-02829	Ku80 (F3)	Mouse	Monoclonal	IF, IHC-P, WB	Hu
NB100-2258	XLF	Rabbit	Polyclonal	IP, WB	Hu
NB100-170	XRCC4	Rabbit	Polyclonal	WB	Hu
NB600-702	XRCC4	Rabbit	Polyclonal	WB	Hu, Rt
NB100-343	XRCC4	Mouse	Polyclonal	IF, WB	Hu

SAMPLE SIZES AVAILABLE

Artemis Antibody NB100-183

Western blot analysis of human testis lysate using NB100-183.

Species: Hu Applications: WB

Ku70 Antibody NB100-336

Species: Hu Applications: WB Pathway Description: Ku70/80 binds to DNA ends and recruits other NHEJ proteins to the break. DNAPKcs activate nucleases via phosphorylation to repair any damaged DNA. Finally, the repaired DNA is ligated by the XRCC4/Ligase IV complex to complete the re-closure of the DNA break.

[Ku70 Antibody NB100-336] Kong X, et al. Comparative analysis of different laser systems to study cellular responses to DNA damage in mammalian cells. Nucleic Acids Res. 2009 May;37(9):e68. [PMID: 19357094]

FAX: 303.730.1966 • WEB: www.novusbio.com

Western blot

HeLa cell lysate

using NB100-336.

analysis of

Homologous Recombination Antibodies

Double-Strand Breaks (DSBs) are perhaps the most significant form of DNA damage because they pose problems for transcription, replication, and chromosome segregation. DSBs differ from most other types of DNA lesions in that they affect both strands of the DNA duplex, thereby preventing the use of the complementary strand as a template for repair. Failure to repair these defects can result in chromosomal instabilities, leading

to deregulated gene expression and carcinogenesis. To counteract the effects of these potential lesions, cells have evolved two distinct pathways of DSB repair, Homologous Recombination (HR) and Non-Homologous End Joining (NHEJ). HR repairs a DSB by copying the missing information from the sister chromatid or homologous chromosome, yielding exact restoration of the DNA.

RBCA1 Antihody

Catalog#	Product	Host	Туре	Application	Species	BRCA1 Antibody
NB100-199	BRCA1	Rabbit	Polyclonal	IP, WB	Hu	NB100-199
NB100-598	BRCA1 (RAY)	Mouse	Monoclonal	IF, IP, WB	Hu	IP/Western blot of HeLa cell
NB100-600	BRCA1 (MU)	Mouse	Monoclonal	IF, IP, WB	Hu	lysates using
NB100-91680	BRCA1	Rabbit	Polyclonal	ELISA, IHC-P	Hu, Mu	NB100-199.
NB100-404	BRCA1 (6B4)	Mouse	Monoclonal	IP, WB	Hu	146
NB100-229	BRCA1 [Ser1189]	Rabbit	Polyclonal	WB	Hu	Species: Hu
NB100-225	BRCA1 [Ser1387]	Rabbit	Polyclonal	WB	Hu	Applications: WB, IP
NB100-226	BRCA1 [Ser1423]	Rabbit	Polyclonal	FACS, WB	Hu, Mu	
NB100-227	BRCA1 [Ser1457]	Rabbit	Polyclonal	IP, WB	Hu	
NB100-228	BRCA1 [Ser1466]	Rabbit	Polyclonal	WB	Hu	Mre11 Antibody
NB100-200	BRCA1 [Ser1524]	Rabbit	Polyclonal	IP, WB	Hu	NB100-142
NBP1-18283	BRCA2	Rabbit	Polyclonal	IHC, WB	Hu, Mu, Rt	Immuno- histochemical
NB100-181	DMC1 (1D12/4)	Mouse	Monoclonal	WB	Hu	analysis of human
NB100-2617	DMC1 (2H12/4)	Mouse	Monoclonal	IF, IP, WB	Hu, Mu, Rt, Bv	epidermis using
NB100-2687	DMC1 (5B10/2)	Mouse	Monoclonal	IP, WB	Hu	NB100-142.
NB100-2627	EME1 (mta317h2/1)	Mouse	Monoclonal	WB	Hu	Species: Hu, Mu
NB100-142	Mrel 1	Rabbit	Polyclonal	IF, IP, WB	Hu, Mu	Applications: WB, IP, IF
NB100-276	Mrel 1	Rabbit	Polyclonal	WB	Hu	
NB100-80869	Mrel 1	Rabbit	Polyclonal	ELISA, IF, IHC-P, WB	Am, Bv, Ca, Ch, Hu, Mk, Mu, Rt, Ze	
NB100-473	Mre11 (12D7)	Mouse	Monoclonal	WB, IP, IF, IHC-P	Hu	NBS1 Antibody
NB100-143	NBS1	Rabbit	Polyclonal	ICC, IP, IF, WB	Hu, Mk, Mu	NB100-143
NB100-60648	NBS1	Rabbit	Polyclonal	IP, WB	Mu	Western blot analysis of
NB100-221	NBS1 (1D7)	Mouse	Monoclonal	WB, IP	Hu	HeLa cell lysates
NB110-10873	NBS1	Rabbit	Polyclonal	WB, IHC	Hu, Mu, Rt	using NB100-143.
NBP1-06705	NBS1	Rabbit	Polyclonal	IHC-P, WB	Hu, Mu	
NB100-222	NBS1 (1C3)	Mouse	Monoclonal	WB, IP	Hu	
NB110-57272	NBS1 (Y112)	Rabbit	Monoclonal	ICC, IHC, IP, WB	Hu, Mu	Species: Hu, Mu, Mk
						Applications: ICC, IF, IP, WB

SAMPLE SIZES AVAILABLE

Novus Guarantee + Innovator's Reward[™] Policy

Novus' Quality Guarantee

We stand behind our products 100%. If you cannot get a product to work in an application or species product or a full refund. Novus' Quality Guarantee covers 100% of the products we carry, including

+ Innovator's Reward™

bioscience research. After all, we're making your success our goal.

= 100% Support and Peace of Mind

TOLL FREE: 888.506.6887 • PHONE: 303.730.1950

Homologous Recombination Antibodies

Rad50 Antibody NB100-1487

Species: Hu Applications: WB, IP

Rad51 (14B4) Antibody NB100-148 Western blot

Species: Hu Applications: WB, IP, IF

Rad52 Antibody NB100-2343

IP/Western blot analysis of HeLa cell lysate uisng NB100-2343.

Western blot analysis of HeLa Nuclear Cell

Extract using NB100-202.

Western blot

analysis of HeLa

cell lysate using

NB100-1487.

analysis of T24 bladder carcinoma using NB100-148.

Species: Hu Applications: IP, WB

XRCC1 Antibody NB100-202

Species: Hu Applications: WB, IP, ICC

XRCC2 Antibody NB120-2367

Immunohistochemical analysis of human testis using NB120-2367.

Species: Hu Applications: IHC-Fr, IHC-P, WB

XRCC4 Antibody NB100-343

Immunofluorescent analysis of human HCT116 cells using NB100-343.

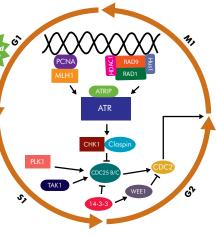
Species: Hu Applications: IF, WB

For research purposes only. Not for use in humans. Prices subject to change.

Catalog#	Product	Host	Туре	Application	Species
NB100-154	Rad50	Rabbit	Polyclonal	IP, WB	Hu, Mu
NB100-1488	Rad50	Rabbit	Polyclonal	WB, IP	Hu
NB100-2601	Rad50	Rabbit	Polyclonal	IHC	Ни, Ми
NBP1-02926	Rad50 (1D7)	Mouse	Monoclonal	IHC-P, IP, WB	Hu
NB100-147	Rad50 (13B3)	Mouse	Monoclonal	WB, IF	Hu
NB100-1487	Rad50	Rabbit	Polyclonal	WB, IP	Hu
NB100-499	Rad51 (13E4)	Mouse	Monoclonal	WB	Ηυ
NB100-148	Rad51 (14B4)	Mouse	Monoclonal	WB, IP, IF	Hu
H00005888-M01	Rad51 (2E5-E5)	Mouse	Monoclonal	WB, ELISA	Hu
29480002	Rad51	Rabbit	Polyclonal	ELISA	Ce
NB100-176	Rad51L1 (1 H3/13)	Mouse	Monoclonal	WB	Ηυ
NB110-10042	Rad51L1 (RAD51B/1E11/6)	Mouse	Monoclonal	ELISA, IA, WB	Ни
NB100-1127	Rad51C	Goat	Polyclonal	WB	Hu 🛁
NB100-177	Rad51C (2H11/6)	Mouse	Monoclonal	WB	Hu, Mu Pro
H00005889-M01	Rad51C (3F3-5C6)	Mouse	Monoclonal	ELISA, IF, RNAi, WB	Hu
H00005892-M01	Rad51D (1C8-3C11)	Mouse	Monoclonal	WB, ELISA	ни Ни
NB100-166	Rad51D	Rabbit	Polyclonal	WB	Ни
NB300-968	Rad51D	Goat	Polyclonal	WB, PEP-ELISA	Ни
NB100-178	Rad51D (5B3/6)	Mouse	Monoclonal	WB, IF	ни Ни
NB100-1128	Rad51L1	Goat	Polyclonal	WB, PEP-ELISA	Ни
NB100-2342	Rad52	Rabbit	Polyclonal	IP	Ни
NB100-2343	Rad52	Rabbit	Polyclonal	IP, WB	ни Ни
NB110-13364	Rad54 (4E3/1)	Mouse	Monoclonal	WB	Ни
H00025788-M01	Rad54B (4A7)	Mouse	Monoclonal	ELISA, IF, WB	ни Ни
H00008438-M01	Rad54L (4G2)	Mouse	Monoclonal	ELISA, WB	Ни
NB100-1406	SIRT4	Goat	Polyclonal	ELISA, IHC, WB	ни Ни
NB100-202	XRCC1	Rabbit	Polyclonal	WB, IP, ICC	Ни
NB120-1838	XRCC1 (33-2-5)	Mouse	Monoclonal	ICC, IHC	Hu, Rt
NB100-169	XRCC1	Rabbit	Polyclonal	WB, IP, IHC, ELISA	ни
NB600-437	XRCC1 (Agarose Immobolized)	Rabbit	Polyclonal	IP	Ни
NB100-533	XRCC1 [phosphoSer461]	Rabbit	Polyclonal	WB	ни Ни
NB100-540	XRCC1 [phosphoSer475]	Rabbit	Polyclonal	WB	ни Ни
NB100-532	XRCC1 [Ser518/Thr519/Thr523]	Rabbit	Polyclonal	WB	ни Ни
NB120-2367	XRCC2	Rabbit	Polyclonal	IHC-Fr, IHC-P, WB	ни
NB100-165	XRCC3	Rabbit	Polyclonal	WB	ни Ни
NB100-2205	XRCC3	Rabbit	Polyclonal	IHC, IP, WB	 Hu, Mu, Rt
NB100-180	XRCC3 (10F1/6)	Mouse	Monoclonal	WB	Bv, Hu, Mk, Rt, Sh
NB100-170	XRCC4	Rabbit	Polyclonal	WB	Hu
NB600-702	XRCC4	Rabbit	Polyclonal	WB	Hu, Rt
NB100-343	XRCC4	Mouse	Polyclonal	IF, WB	ни Ни

Can't Decide? Try a SuperNovus Pack: NB100-914 • Mre11-Rad50-NBS1 • Includes 3 anti-Mre11-Rad50-NBS1 Antibodies

SAMPLE SIZES AVAILABLE



Checkpoint Signaling & Double Strand Break (DSB) Repair Antibodies

The genomes of mammalian cells are under continuous assault by environmental agents (e.g., UV light and reactive chemicals) as well as the byproducts of normal intracellular metabolism (e.g., reactive oxygen intermediates and inaccurately replicated DNA). Whatever the origin, genetic damage threatens cell survival and leads to organ failure, immunodeficiency, cancer, and other pathologies sequelae. To ensure that cells pass accurate copies of their genomes on to the next generation, evolution has overlaid the core cell-cycle machinery with a series of surveillance pathways termed cell-cycle checkpoints. These checkpoints detect damaged or abnormally structured DNA and coordinate cell-cycle progression with DNA repair. Typically, cell-cycle checkpoint activation slows or arrests cell-cycle progression, thereby allowing time for appropriate repair mechanisms to correct genetic lesions before they are passed on to the next generation of daughter cells.

Catalog#	Product	Host	Туре	Application	Species
NB100-305	53BP1	Rabbit	Polyclonal	ICC, IF, WB	Hu, Mu
NB100-304	53BP1	Rabbit	Polyclonal	FACS, ICC , WB	Hu, Mu
NB100-904	53BP1	Rabbit	Polyclonal	ICC, WB	Ни, Ми
NB100-1803	53BP1 [phospho Ser25]	Rabbit	Polyclonal	FACS, IP, WB	Hu, Mu
NBP1-19447	53BP1	Rabbit	Polyclonal	IF, IHC-P, WB	Hu, Mu, Rt
NB100-104	ATM	Rabbit	Polyclonal	IF, IHC, IP , WB	Hu Fe Pr
NB100-270	ATM	Goat	Polyclonal	WB, IP	Hu, Mu
NB100-271	ATM	Goat	Polyclonal	ICC, IHC, IP, WB	Hu, Mu
NB100-1638	ATM	Rabbit	Polyclonal	WB, IHC	Ha, Hu, Mu, Mk
NB100-678	ATM	Rabbit	Polyclonal	IP, WB	Hu
NB100-1825	ATM	Rabbit	Polyclonal	IHC	Hu
NBP1-41736	ATM	Rabbit	Polyclonal	WB	Hu, Mu
NB600-621	ATM (10H11.E12) [phospho Ser1981]	Mouse	Monoclonal	ELISA, IF, WB	Hu, Mu
NB100-309	ATM (2C1)	Mouse	Monoclonal	IF, IHC, IP, WB	Hu, Mu, Mk, Rt
NB100-219	ATM (3E8)	Mouse	Monoclonal	IP, WB	Hu, Mu, Mk, Rt
NB100-220	ATM (5C2)	Mouse	Monoclonal	IF, WB	Hu, Mu, Mk, Rt
NB600-622	ATM (7C10D8) [phospho Ser1981]	Mouse	Monoclonal	IHC, IF, IP, WB	Hu, Mu
NB600-398	ATM [Agarose Immobolized]	Goat	Polyclonal	IP	Hu, Mu
NB600-399	ATM [Agarose Immobolized]	Goat	Polyclonal	IP	Hu, Mu
NB600-569	ATM (SYR6D4)	Mouse	Monoclonal	IHC	Hu, Mu
NB110-55475	ATM (Y170) [phosphoSer1981]	Rabbit	Monoclonal	IHC, IP, WB, ICC	Hu
NB100-1679	ATM	Rabbit	Polyclonal	WB, IF	Ни
NB300-585	ATR	Rabbit	Polyclonal	IF, IP, WB	Ни
NB100-322	ATR	Rabbit	Polyclonal	WB	Hu, Mu
NB100-323	ATR	Rabbit	Polyclonal	WB	Hu, Mu
NB100-308	ATR (2B5)	Mouse	Monoclonal	IF, IP, WB	Hu
NB100-359	ATRIP	Rabbit	Polyclonal	WB, IP	Hu
NB100-2115	ATRIP	Rabbit	Polyclonal	WB, IP	Hu
NBP1-19365	ATRIP	Rabbit	Polyclonal	IF, IHC-P, WB	Hu, Mu, Rt
NB100-57483	ATRX	Rabbit	Polyclonal	WB, IP	ни Ни
NB100-60685	ATRX	Rabbit	Polyclonal	IHC, IHC-P	Hu
H00000546-M01	ATRX (3C9)	Mouse	Monoclonal	ELISA, WB	Hu
NB100-212	Aurora A	Rabbit	Polyclonal	ICC, IF, IHC, IP	Hu
NB100-267	Aurora A	Rabbit	Polyclonal	IF, IHC, IP, WB	ни Ни
NB100-635	Aurora A	Rabbit	Polyclonal	WB, IF	Mu, Rt
NB100-779	Aurora A	Goat	Polyclonal	PEP-ELISA, WB	 Ни

Pathway Description: Activation of the cell cycle checkpoint signaling pathway occurs as a result of DNA damage. The damage materializes as replication fork stalling or UV induced DNA dimerization. Damage sensed by the 911 complex or PCNA activates ATR. The activation of ATR blocks the action of CDC25B/C and prevents the progression of the cell cycle from G2 to M phase.

ATM Antibody NB100-104

Species: Hu Applications: IF, IHC, IP, WB

mmunohisto-:hemical analysis of testis, :eminiferous ubule using NB100-104.

Aurora A Antibody NB100-212

Species: Hu Applications: ICC, IF, IHC, IP

Immunohistochemical analysis of human pancreatic tumor tissue using NB100-212.

TOLL FREE: 888.506.6887 • PHONE: 303.730.1950

Daily product updates! www.novusbio.com

Checkpoint Signaling & DSB Repair Antibodies

Catalog#	Product	Host	Туре	Application	Species
NB100-1641	Aurora A (35C1)	Mouse	Monoclonal	ELISA, IF, IP, WB, ICC	Hu, Mu
NB100-1829	Aurora A (35C1) [Biotin]	Mouse	Monoclonal	IF, WB	Hu, Mu
NB100-2371	Aurora A [phospo Thr288]	Rabbit	Polyclonal	IF, ICC	Hu
	BRCA1	See Hor	nologous Reco	mbination (Page 3)	
NB100-213	CDC25A	Rabbit	Polyclonal	WB, IP	Hu
NB100-269	CDC25A	Rabbit	Polyclonal	WB, IP	Hu
NB600-418 / 419	CDC25A [Agarose Immoblized]	Rabbit	Polyclonal	IP	Hu
NB120-2357	CDC25A (DCS-120+DCS-121)	Mouse	Monoclonal	IHC-Fr, IHC-P, IP, WB	Hu, Rt
DM337	CDC25A (DCS-120+DCS-121)	Mouse	Monoclonal	IF, IHC-P, IP, WB	Hu
NB100-274	СНК1	Goat	Polyclonal	WB	Hu
NB100-275	СНК1		Polyclonal	WB	ни Ни
NB100-311	СНК1	Goat	Polyclonal	WB, IP	ни Ни
NB100-464	СНК1	Rabbit	Polyclonal	WB, IP	ни Ни
NB100-1734	CHK1	Rabbit	Polyclonal	IHC	Ни, Ми
NB100-2373	CHK1 [phospho Ser317]	Rabbit	Polyclonal	IHC	Ни
NB100-1768	CHK1 (2G11D5)	Rabbit	Monoclonal	WB, ELISA	Hu
NB110-55718	CHK1 (E250)	Rabbit	Monoclonal	ICC, WB	
•••••	••••••••••••		Monoclonal	• • • • • • • • • • • • • • • • • • • •	
NB110-55717	CHK1 (EP691Y)	Rabbit		FACS, IHC, WB, ICC	HU Hu Mu D+
NB100-92500	CHK1 [phospho Ser345]	Rabbit	Polyclonal	ELISA, IHC-P	Hu, Mu, Rt
NB100-1707	CHK2	Rabbit	Polyclonal	IP	
NB100-1709	CHK2	Rabbit	Polyclonal	WB, IP	
NB100-500	CHK2 (8F12)	Mouse	Monoclonal	WB	
NB100-92502	CHK2 [phospho Thr68]	Rabbit	Polyclonal	ELISA, IHC-P, WB	
NB110-55719	CHK2 (E126) [phospho Thr68]	Rabbit	Monoclonal	IP, WB, ICC	Hu
NB110-55720	CHK2 (Y171) [phospho Thr68]	Rabbit	Monoclonal	IP, WB	Hu
NB110-57379	DNA Ligase IV	Rabbit	Polyclonal	WB, IHC-P, ELISA	Hu
NB100-384	gamma-H2AX [Ser139]	Rabbit	Polyclonal	ICC, FACS, WB	Hu, Mu
NB100-2241	HDAC1	Rabbit	Polyclonal	WB, IP	Hu, Mu
NB500-124	HDAC1	Rabbit	Polyclonal	ChIP, ICC, IF, IHC, IP, WB	Hu, Mu, Rt
H00003065-M06	HDAC1 (1D6)	Mouse	Monoclonal	ELISA, IF, IHC-P, WB	Hu
H00003065-M02	HDAC1 (3E1)	Mouse	Monoclonal	ELISA, IF, IHC-P, WB	Hu
H00003065-M11	HDAC1 (5A11)	Mouse	Monoclonal	ELISA, IHC-P, IF, WB	Hu
H00003065-M14	HDAC1 (5C11)	Mouse	Monoclonal	ELISA, WB, IF, IHC-P	Hu
NB120-12168	HDAC1 (HDAC1-21)	Mouse	Monoclonal	ELISA, IP, WB	Hu, Mu
	Ku 70	See Nor	n-Homologous	End Joining (Page 2)	
	Ku 80	See Nor	n-Homologous	End Joining (Page 2)	
NB100-197	MLH1	Rabbit	Polyclonal	IHC, IP, WB	Hu
NB600-423	MLH1 [Agarose Immobalized]	Rabbit	Polyclonal	IP	Hu
H00004292-M02	MLH1 (M1)	Mouse	Monoclonal	IF, IHC-P, ELISA, WB	Hu
	MRE11	See Hor	nologous Reco	mbination (Page 3)	
	NBS1	See Hor	nologous Reco	mbination (Page 3)	
NB500-321	p53 (BP53-12)	Mouse	Monoclonal	ELISA , IHC-P, IP , WB , ICC	Hu, Mk
NB500-356	p53 (BP53-12) [FITC]	Mouse	• • • • • • • • • • •	FACS, ICC, IHC, WB	 Mu
NB200-103	p53 (PAb 240)	Mouse		ELISA, FACS, IP, IHC-P, WB	Hu, Mu, Rt
NB100-1913	p53 [Ser15]		Polyclonal	WB, IP, IHC	Hu, Mu, Rt
NB110-66663	p53 (EP42Y) [Ser46]	Rabbit	Monoclonal	ICC, IHC, IP, WB	Hu
NB200-156	p53 [Ser392]	Rabbit	Polyclonal	WB	Hu, Mk
NB120-8105	p53R2	Rabbit	Polyclonal	WB	Hu, Mu, Rt
	•		· · · · · ·		, ,

CDC25A Antibody NB100-213

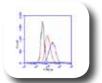
IP/Western blot analysis of HeLa nuclear extracts using NB100-213.

Species: Hu Applications: WB, IP

CHK1 Antibody NB100-1734

Immunohistochemical analysis of human testis using NB100-1734.

Species: Hu, Mu Applications: IHC


CHK2 Antibody NB100-1707

IP/Western blot analysis of HeLa cell lysates using NB100-1707.

Species: Hu Applications: IP

gamma H2AX [Ser139] Antibody NB100-384

Flow Cytometrical analysis of gamma-H2AX in etoposide treated Jurkat cells using NB100-304.

Species: Hu, Mu Applications: ICC, FACS, WB

MLH1 Antibody NB100-197

Western blot analysis of MLH1 on HeLa nuclear extracts using NB100-197.

Species: Hu Applications: IHC, IP, WB

p53 [Ser15] Antibody NB100-1913

Western blot analysis of extract from UV treated (lane 2) and untreated (Lane 1) HeLa cells using NB100-1913.

Species: Hu, Mu, Rt Applications: WB, IP, IHC

Checkpoint Signaling & DSB Repair Antibodies

Catalog#	Product	Host	Туре	Application	Species
NB500-231	PERP	Rabbit	Polyclonal	WB	Hu
NB100-546	PLK1	Rabbit	Polyclonal	IP, WB	Ни
NB100-548	PLK1	Rabbit	Polyclonal	IP, WB	Ни
NBP1-02760	PLK1 [phosphoThr210]		Polyclonal	ELISA, IHC-P, WB	Hu
H00005347-M01		Mouse	Monoclonal	ELISA, IF, WB	Ни
H00005347-M02		Mouse	Monoclonal	ELISA, WB	Ни
H00005347-M04	••••••	Mouse	Monoclonal	ELISA, IF, WB	Ни
NB100-1497	PP2A alpha	Goat	Polyclonal	PEP-ELISA, WB	Hu
NB100-2259	PP2A alpha	Rabbit	Polyclonal	WB	Ни, Ми
NB100-2260	PP2A alpha	Rabbit	Polyclonal	WB, IP	Ηυ, Μυ
NB100-501	PPP2R5C (TQ11-1G6)	Mouse	Monoclonal	WB, IP	Ηυ, Μυ
NB110-57432	PP2A alpha (E155) [phosphoTyr301]	Rabbit	Monoclonal	ICC, IHC, IP, WB	Hu, Rt
NB110-57430	PP2A alpha (Y119)	Rabbit	Monoclonal	IHC, IP, WB, ICC	Hu, Mu, Rt
NB110-57431	PP2A alpha (YE351)	Rabbit	Monoclonal	IHC, WB	Hu, Mu, Rt
H00005591-M02	••••••••••••••••••••••••••••••••	Mouse	Monoclonal	ELISA , IHC-P, WB	Ни
NB110-56935	DNA PKcs (Y393)	Rabbit	Monoclonal	IHC, WB, ICC	Ни
NB100-660	DNA PKcs	Rabbit	Polyclonal	IP, WB	не Ни
NB100-657	DNA PKcs	Rabbit	Polyclonal	IP, WB	
NB500-230	PUMA	Rabbit	Polyclonal	WB	
NBP1-02952	PUMA	Rabbit	Polyclonal	ICC, IHC-P, WB	ни, Ми
NB100-173	Rad17	Rabbit	Polyclonal	WB	Ни
NB100-172	Rad17	Rabbit	Polyclonal	WB WB	Ye
NB100-172 NB100-272	Rad17	Goat	Polyclonal	WB WB	
•••••	•••••••••••••••••••••••••	• • • • • • • •	Monoclonal	WB WB	Ye
NB100-2760	Rad17 (1C6/2)	Mouse Mouse	Monoclonal	ELISA, WB	
H00005884-M01		• • • • • • • •	Polyclonal	WB	
NB100-273	Rad 17 [phospho Ser645]	Rabbit Rabbit	Polyclonal	WB WB	Hu
NB100-56386	Rad17 [phospho Ser647]	• • • • • • •	••••		
•••••	Rad50 Rad51			mbination (Page 4)	
ND100 150	••••••	••••		mbination (Page 4)	ш., м.,
NB100-159	RPA14 (11.1)	Mouse	Monoclonal	• • • • • • • • • • • • • • • • • • • •	Hu, Mu
NB100-160	RPA14 (14.1)	Mouse	Monoclonal	ELISA, IP, WB	Hu, Mu
NB100-157	RPA2	Mouse	Polyclonal		Hu
NB100-158	RPA2 (12F3.3)	••••	•••••	WB, IP	Hu, Mu
NB600-565	RPA2 (9H8)	Mouse	Monoclonal	IHC-Fr, IHC-P, IP, IF, WB	
NB100-204	SMC1	Rabbit	Polyclonal	IP, IF, WB	Hu, Mu, Xp
NB100-1755	SMC1	Rabbit	Polyclonal	IHC	Hu, Mu
NB600-433	SMC1 [Agarose Immobalized]	Rabbit	Polyclonal	IP	Hu
NB100-205	SMC1 [phoshop Ser957]	Rabbit	Polyclonal	WB, IP	Hu
NB100-206	SMC1 [Ser966]	Rabbit	Polyclonal	FACS, IP, WB	Hu
NB100-1754	SMC1 [phospho Ser966]	Rabbit	Polyclonal	IHC	Hu, Mu
H00008243-M01	••••••••••••••••••••••••••••••••••••	Mouse	Monoclonal	ELISA, WB, IHC-P	Hu
H00007465-M01A	••••••	Mouse	Monoclonal	ELISA, WB	Hu
	XRCC4	See Hor	nologous Reco	mbination (Page 4)	

NB100-1497

PP2A alpha Antibody

Applications: PEP-ELISA, WB

Western blot analysis of human lymph node lysate using NB100-1497.

Rad17 [phospho

Ser645] Antibody

NB100-273

Species: Hu

Western blot

Applications: WB

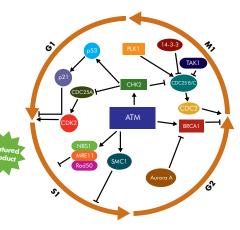
analysis of human

using NB100-273.

Phospho-Rad17

Species: Hu Applications: WB

Western blot analysis of PUMA in HL-60 whole cell lysate using NB500-261.


SMC1 [phospho Ser957] Antibody NB100-205

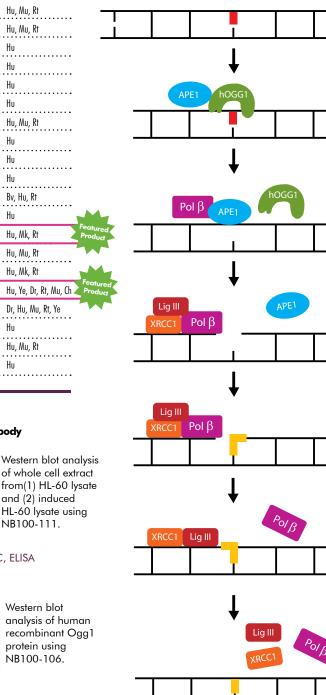
Species: Hu Applications: WB, IP

Western blot analysis of SMC1 on HeLa whole cell extracts using NB100-205.

ATM Kinase & Checkpoint Signaling

Pathway Description: ATM kinase is capable of regulating cell cycle progression in response to DNA damage at multiple points. Activation of CHK2 and CDC25A is able to prevent the G1 to S transition. The action of the MRN complex and SMC1 act to prevent progression of S phase. Prevention of mitosis by ATM signaling occurs via the action of BRCA1 and inhibition of CDC25B/C.

Can't Decide? Try a SuperNovus Pack:


NB100-926 • 53BP1 SuperNovus Pack • Includes 2 anti-53BP1 antibodies NB100-915 • ATM SuperNovus Pack • Includes 3 anti-ATM antibodies NB100-916 • ATR SuperNovus Pack • Includes 2 anti-ATR antibodies NB100-917 • Aurora A SuperNovus Pack • Includes 2 anti-Aurora A antibodies NB100-921 • CD22 SuperNovus Pack • Includes 2 anti-Cdc25A antibodies NB100-949 • DNA PKcs SuperNovus Pack • Includes 4 anti-DNA PKcs antibodies

Base Excision Repair Antibodies

Base excision repair (BER) is a cellular mechanism that repairs damaged DNA during DNA replication. Repairing DNA sequence errors is necessary so that mutations are not induced during replication. Single bases in DNA can be chemically mutated, e.g., by deamination or alkylation, resulting in incorrect basepairing and consequently mutations in the DNA. Base excision repair involves flipping the mutated base out of the DNA helix and repairing the base alone. This process requires two main enzymes, DNA glycosylases

and AP endonucleases. DNA glycosylase is used to break the β -N glycosidic bond to create an AP site. AP endonuclease recognizes this site and nicks the damaged DNA on the 5' side (upstream) of the AP site, creating a free 3'-OH. DNA polymerase, Pol I, extends the DNA from the free 3'-OH using its exonuclease activity to replace the nucleotide of the damaged base, as well as a few downstream. This is followed by sealing of the new DNA strand by DNA ligase.

Base Excision Repair Short Patch

Catalog#	Product	Host	Туре	Application	Species
NB100-101	APE1	Rabbit	Polyclonal	ICC, IF, IHC, IP, WB	Hu, Mu, Rt
NB100-116	APE1 (13B8E5C2)	Mouse	Monoclonal	ChIP, ICC, IF, IHC-Fr, IP	Hu, Mu, Rt
NB100-897	APE1	Goat	Polyclonal	PEP-ELISA, WB	Hu
NB100-152	DNA Ligase III (6G9)	Mouse	Monoclonal	IHC-P, IP, WB	Hu
NB100-146	FEN1	Mouse	Polyclonal	WB	Ни
NB100-150	FEN1 (4E7)	Mouse	Monoclonal	FACS, ICC, IF, WB	Hu
NB100-109	MTH1	Rabbit	Polyclonal	ICC, IF, IHC-Fr, WB	Hu, Mu, Rt
NB600-1032	МҮН	Rabbit	Polyclonal	WB	Hu
NB300-881	NEIL1	Goat	Polyclonal	IHC-P, PEP-ELISA, WB	Hu
100252969-M01	NEIL2 (1B7)	Mouse	Monoclonal	ELISA, RNAi, WB	Hu
NB100-108	NTH1	Rabbit	Polyclonal	ICC, WB	Bv, Hu, Rt
NB100-302	NTH1	Rabbit	Polyclonal	WB	Hu
NB100-106	Ogg1	Rabbit	Polyclonal	WB, IHC	Hu, Mk, Rt
NB120-2168	PARP	Rabbit	Polyclonal	WB, IHC	Hu, Mu, Rt
NB100-111	PARP (C-2-10)	Mouse	Monoclonal	WB, ICC, ELISA	Hu, Mk, Rt
NB500-106	PCNA (PC10)	Mouse	Monoclonal	FACS, ICC, IHC, IP, WB	Hu, Ye, Dr, Rt, Mu, Ch
NB110-3158	PCNA (PC10) [FITC]	Mouse	Monoclonal	IHC, FACS	Dr, Hu, Mu, Rt, Ye
NB100-1414	SMUG1	Goat	Polyclonal	PEP-ELISA, WB	Hu
NB600-1031	Uracil DNA Glycosylase	Rabbit	Polyclonal	WB	Hu, Mu, Rt
100007374-M01	Uracil DNA Glycosylase (4C12)	Mouse	Monoclonal	ELISA	ни Ни
	XRCC1	See Hor	nologous Reco	mbination (Page 4)	•••••

APE1 Antibody NB100-101

histochemical analysis of prostate cancer using NB100-101.

Immuno-

Species: Hu, Mu, Rt Applications: ICC, IF, IHC, IP, WB

PCNA (PC10) Antibody NB500-106

Immunohistochemical analysis of human colon carcinoma using NB500-106.

Species: Ch, Dr, Hu, Mu, Rt, Ye Applications: FACS, ICC, IHC, IP, WB

PARP (C-2-10) Antibody NB100-111

and (2) induced NB100-111.

Species: Hu, Mk, Rt Applications: WB, ICC, ELISA

Ogg1 Antibody NB100-106

analysis of human recombinant Ogg1 protein using

Species: Hu, Mk, Rt Applications: IHC, WB

FAX: 303.730.1966 • WEB: www.novusbio.com

Nucleotide Excision Antibodies

Nucleotide excision repair (NER) is an important DNA repair mechanism by which the cell repairs DNA damage occuring to bases. Base damage can be caused by a variety of sources including chemicals and ultraviolet (UV) light from the sun. Using NER, a cell can prevent unwanted mutations by removing the majority of UV-induced DNA damage (mostly in the form of thymine dimmers and 6-4-photoproducts). The importance of this repair mechanism is evidenced by the severe human diseases that result from in-born genetic mutations of NER proteins, i.e. Xeroderma pigmentosum and Cockayne's syndrome. NER recognizes bulky distortions in the shape of the DNA double helix. Recognition of these distortions leads to the removal of a short single-stranded DNA segment that includes the lesion, creating a single-strand gap in the DNA. This gap is subsequently filled in by DNA polymerase, using the undamaged strand as a template.

Catalog#	Product	Host	Туре	Application	Species
H00001022-A01	CDK7	Mouse	Polyclonal	ELISA, WB	Hu
NB100-581	CDK7	Rabbit	Polyclonal	IP, WB	Hu
H00001069-A02	Centrin 2	Mouse	Polyclonal	WB, ELISA	Hu
H00000902-M01	Cyclin H (1B8)	Mouse	Monoclonal	ELISA, IHC-P, IF, WB	Hu
NB100-777	DDB1	Goat	Polyclonal	WB	Hu, Mu
NB100-625	DDB1	Rabbit	Polyclonal	WB, IP	Hu, Mu
H00001642-A01	DDB1	Mouse	Polyclonal	ELISA, WB	Hu
NB100-117	ERCC1 (3H11)	Mouse	Monoclonal	WB, IP	Hu
NB500-704	ERCC1 (8F1)	Mouse	Monoclonal	WB, IP, IHC	Hu, Rt
H00002074-A01	CSB	Mouse	Polyclonal	ELISA, WB	Hu
H00001161-M01	ERCC8 (2G3-C6)	Mouse	Monoclonal	ELISA, WB	Hu
H00002965-M01	GTF2H1 (1F12-1B5)	Mouse	Monoclonal	ELISA, IF, IHC-P, RNAi, WB	Hu
H00002967-A01	GTF2H3	Mouse	Polyclonal	ELISA, WB	Hu
NSB726	IKB alpha [pS32/S36]	Rabbit	Polyclonal	WB	Hu
H00003978-M01	DNA Ligase 1 (10G12)	Mouse	Monoclonal	ELISA, IHC-P, WB	ни
H00005886-M01	hHR23A (3C12)	Mouse	Monoclonal	ELISA, RNAi, WB	Hu
	RPA14	See Checkpo	oint Signaling (Page 7)		•••••
NB100-157	RPA2	Mouse	Polyclonal	WB	Hu
NB100-332	RPA2	Rabbit	Polyclonal	WB, IP	Hu
NB100-347	RPA2	Rabbit	Polyclonal	ELISA, WB	ни <i>,</i> Ми
NB100-544	RPA2 [pSer33]	Rabbit	Polyclonal	WB, IP, IF	Hu
NB600-565	RPA2 (9H8)	Mouse	Monoclonal	WB, IP, IF, IHC	Hu
NB100-2204	RPA70	Rabbit	Polyclonal	WB, IP	ни Ни
NB100-218	ХАВ2	Rabbit	Polyclonal	WB	Hu
NB100-794	XAB2	Goat	Polyclonal	PEP-ELISA, WB	Hu
H00056949-M01	XAB2 (1D1-1A9)	Mouse	Monoclonal	ELISA, IHC-P, IF, WB	Hu
NB100-92124	ХРА	Rabbit	Polyclonal	ELISA, IHC-P, WB	н <i>и,</i> Ми
NB600-568	XPA (12F5)	Mouse	Monoclonal	IHC, WB	Hu
H00002071-A01	ХРВ	Mouse	Polyclonal	ELISA, WB	ни Ни
NB100-477	XPC (3.26)	Mouse	Monoclonal	IHC-P, WB	ни Ни
NB100-58801	ХРС	Rabbit	Polyclonal	IP, WB	 Ни, Ми
H00002068-M01	XPD (4G2-2A6)	Mouse	Monoclonal	ELISA, WB	Hu
NB100-120	XPG (8H7)	Mouse	Monoclonal	IHC, IP, WB	ни Ни

XPC (3.26) Antibody NB100-477

Immunofluorescent staining of HeLa cells uisng NB100-477.

Species: Hu Applications: IHC-P, WB

XAB2 (101-1A9) Antibody H00056949-M01

Immunohistochemical analysis of human lung using H00056949-M01.

Species: Hu Applications: ELISA, IF, IHC-P, WB

ERCC1 (3H11) Antibody NB100-117

Western blot analysis of ERCC1 in HeLa whole cell lysate (NB800-PC1) using NB100-117.

Species: Hu Applications: WB, IP

ERCC1 (8F1) Antibody NB500-704

Immunohistochemical analysis of human tonsil using NB500-704.

Species: Hu, Rt Applications: WB, IP, IHC

RPA70 Antibody NB100-2204

Western blot analysis of HeLa cell lysates using NB100-2204.

Species: Hu Applications: WB, IP

XAB2 Antibody NB100-794

Western blot analysis of A431 lysate using NB100-794.

Species: Hu Applications: PEP-ELISA, WB

> Daily product updates! www.novusbio.com

TOLL FREE: 888.506.6887 • PHONE: 303.730.1950

Mismatch Repair Antibodies

Any mutational event that disrupts the superhelical structure can potentially compromise the genetic stability of a cell. Mismatch repair is a system for recognizing and repairing the erroneous insertion, deletion and misincorporation of bases that can arise during DNA replication and recombination, as well as repairing some forms of DNA damage. The fact that the damage detection and repair systems are as complex as the replication machinery itself

> Immunohistochemical analysis of of human colon adenocarcinoma using NB100-2887.

Western blot

analysis of human (HeLa) and mouse (NIH3T3) lysates using NB100-621. highlights the importance evolution has attached to DNA fidelity. Examples of mismatched bases include G/T or A/C pairings. The damage is repaired by excising the wrongly incorporated base and replacing it with the correct nucleotide. Usually, this involves more than just the mismatched nucleotide itself, and can lead to the removal of significant tracts of DNA.

MSH2 Antibody NB100-2887

Species: Hu, Mu Applications: IHC-P

MSH2 Antibody NB100-621

Species: Hu, Mu Applications: WB, IP

MSH6 Antibody NB100-328

staining of HCT-116 cells using NB100-328.

Immunofluorescent

Species: Hu Applications: ICC, IHC, IP, WB

Catalog#	Product	Host	Туре	Application	Species
NB100-197	MLH1	Rabbit	Polyclonal	IHC, IP, WB	Hu
NBP1-19645	MLH1	Rabbit	Polyclonal	IF, WB	Hu, Mu, Rt
NB100-56552	MLH1 (164C819)	Mouse	Monoclonal	WB	Ca, Hu, Mu
NB600-423	MLH1 [Agarose Immobalized]	Rabbit	Polyclonal	IP	Hu
25490002	MLH1	Rabbit	Polyclonal	ELISA	Hu
NB110-59930	MLH1 (G168-15)	Mouse	Monoclonal	IF, IHC	Hu, Mu, Rt
H00004292-M02	MLH1 (M1)	Mouse	Monoclonal	ELISA, IF, IHC-P, WB	Hu
NB100-1071	MLH3	Goat	Polyclonal	PEP-ELISA, WB	Hu
NBP1-00107	MLH3	Rabbit	Polyclonal	IP	Hu
NB600-682	MSH3	Rabbit	Polyclonal	IHC	Rt
NB100-198	MSH2	Rabbit	Polyclonal	WB, IP	Hu
NB100-2887	MSH2	Rabbit	Polyclonal	IHC, IHC-P	Hu, Mu
H00004436-A01	MSH2	Mouse	Polyclonal	ELISA, WB	Hu
NB100-620	MSH2	Rabbit	Polyclonal	WB, IP	Hu
NB100-621	MSH2	Rabbit	Polyclonal	WB, IP	Hu, Mu
NB100-1767	MSH2 (3A2B8C)	Rabbit	Monoclonal	WB, IHC, ELISA	Hu
NB600-424	MSH2 [Agarose Immobalized]	Rabbit	Polyclonal	IP	Hu
NB100-1419	MSH3	Goat	Polyclonal	PEP-ELISA ,WB	Hu
NB100-1422	MSH4	Goat	Polyclonal	PEP-ELISA ,WB	Hu
NB100-1425	MSH5	Goat	Polyclonal	PEP-ELISA ,WB	Hu
38750002	MSH5	Rabbit	Polyclonal	ELISA	Ce
NB100-329	MSH6	Rabbit	Polyclonal	IP, WB	Hu
NB100-328	MSH6	Goat	Polyclonal	ICC, IHC, IP, WB	Hu
NB110-40557	MSH6	Rabbit	Polyclonal	IHC	Hu
NB110-59929	MSH6 (44)	Mouse	Monoclonal	IHC-P	Ca, Hu, Mu, Rt
NB100-1075	PMS1	Goat	Polyclonal	PEP-ELISA, WB	Hu
NB100-209	PMS2	Rabbit	Polyclonal	WB, IP	Hu
NB100-56554	PMS2 (163C1251)	Mouse	Monoclonal	WB	Hu, Mu
NB600-428	PMS2 [Agarose Immobalized]	Rabbit	Polyclonal	IP	Hu

WANT YOUR ANTIBODY PRODUCED FOR FREE? Visit our website, www.novusbio.com, and fill out the Antibody Grant Sheet for a chance to receive 2 mgs of FREE antibody!

Grant Award Date: 1 Award selected on the 15th of every month. Awardees will receive a 0.2 mg test sample of affinity purified rabbit sera. (Typical antibody production takes 4-5 months). If the product works and you supply the necessary documentation, you will receive **2 mgs** of affinity purified antibody in exchange for product feedback. Novus reserves the right to sell the antibody produced by the grant. Submit by the end of the month to be selected in the following month's drawing by fax (below) or email (collaborations@novusbio.com).

For research purposes only. Not for use in humans. Prices subject to change.

FAX: 303.730.1966 • WEB: www.novusbio.com

DNA Polymerase Antibodies

Host

Rabbit

Mouse

Rabbit

Mouse

Mouse

Mouse

Mouse

Mouse

Mouse

Rabbit

Rabbit

Rabbit

Mouse

Goat

Rabbit

Mouse

Mouse

Type

Polyclonal

Polyclonal

Polyclonal

Monoclonal

Monoclonal

Monoclonal

Monoclonal

Polyclonal

Monoclonal

Polyclonal

Polyclonal

Polyclonal

Monoclonal

Polyclonal

Polyclonal

Polyclonal

Polyclonal

See Base Excision Repair (Page 8)

Application

ELISA, WB

ELISA, WB

WB

WB

WB

IP

WB

WB

IP, WB

ELISA, WB

ELISA, WB

IHC, WB

ELISA, WB

ELISA. IF. WB

ELISA, IF, IHC-P, RNAi, WB

IHC-P, PEP-ELISA, WB

ELISA, IHC-P, WB

Species

Hυ

Hυ

Hu

Hu

Hu

Ηu

Hυ

Hu

Hu

Hu

Hυ

Ηu

Ηu

Hu

Hu, Mu, Mk

Hu, Mu, Rt

Hu, Bv, Mu, Rt, Xp

DNA polymerase is an enzyme that assists in DNA replication. Such enzymes catalyze the polymerization of deoxyribonucleotides alongside a DNA strand, which are "read" and used as a template. The newly-polymerized molecule is complementary

Catalog#

NB100-92311

NB100-91734

NB600-1025

NB600-1026

NB100-476

H00005427-M01

H00054107-B01

NB100-115

NB100-60423

NBP1-33633

NB100-175

NB100-1358

NB100-81664

H00056655-A01

H00005980-A01

H00051426-M01

NB100-342

Product

DNA Polymerase Alpha

DNA Polymerase Beta

DNA Polymerase Beta

DNA Polymerase Beta (18S)

DNA Polymerase Beta (61)

DNA Polymerase Delta (607)

DNA Polymerase Epsilon

DNA Polymerase Eta

DNA Polymerase lota

DNA Polymerase Gamma

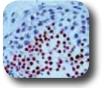
DNA Polymerase Epsilon (3C5.

DNA Polymerase Kappa (6F2)

DNA Polymerase Lambda

DNA Polymerase Lambda

PCNA


POLE4

REV3L

DNA Polymerase Epsilon p59 (1A3)

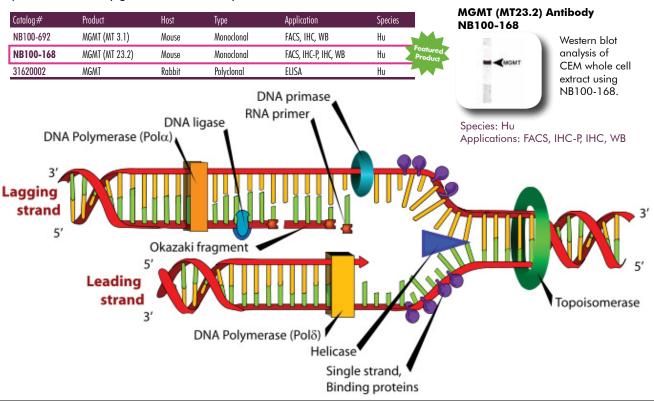
to the template strand and identical to the template's partner strand. DNA polymerase initiates DNA replication by binding to a piece of single-stranded DNA.

DNA Polymerase Beta (61) Antibody NB600-1026

Immunohistochemical analysis of human testis using NB600-1026.

Species: Hu Applications: IHC, WB

DNA Polymerase Epsilon (3C5.1) Antibody NB100-115



Western blot analysis of HeLa whole cell lysate using NB100-115.

Species: Ha, Hu, Mk, Mu Applications: WB

Direct Reversal of Damage Antibodies

Direct reversal of O6 adducts caused by chemotherapy agents is accomplished in mammalian cells by the protein O6-methylguanine DNA methyltransferase (MGMT). Some tumors overexpress MGMT and are resistant to alkylator therapy.

TOLL FREE: 888.506.6887 • PHONE: 303.730.1950 Daily product updates!

Longevity Antibodies

A number of individual genes have been identified that influence variations in lifespan within a population of organisms. The effects of these genes are strongly dependent on the environment, particularly on the organism's diet. Caloric restriction reproducibly results in extended lifespan in a variety of organisms, likely via nutrient sensing pathways and decreased metabolic rate. The molecular mechanisms by which such restriction results in lengthened lifespan are unclear; however, the behavior of many genes known to be involved in DNA repair is altered under conditions of caloric restriction.

Catalog#	Product	Host	Туре	Application	Species	D
NB100-1924	DAF-3	Rabbit	Polyclonal	ChIP, IP, WB	Ce	N
NB200-307	FOXO1A (7H3)	Mouse	Monoclonal	WB	Hu	
25580002	FOXO1A	Rabbit	Polyclonal	ELISA	Hu	
NB100-614	FOXO3A	Rabbit	Polyclonal	WB, IP	Hu	
NB100-1438	F0X03A	Goat	Polyclonal	PEP-ELISA, WB	Hu	
NBP1-19826	F0X03A	Rabbit	Polyclonal	IF, IHC-P, WB	Hu, Mu	
25590002	FOXO3A	Rabbit	Polyclonal	ELISA	Hu	S . A
H00002309-M08	F0X03A (4F2)	Mouse	Monoclonal	ELISA, IHC-P, WB	Hu	
NB110-57058	HSF1 (EP1710Y)	Rabbit	Monoclonal	FACS, ICC, IP, IHC, WB	Hu	•
NB100-79972	HSF1 (EP1711Y) [phospho Ser303/Ser307]	Rabbit	Monoclonal	ICC, IHC, WB	Hu	F
NB100-81966	HSF1	Rabbit	Polyclonal	IHC, WB	Hu	N
••••••	Ки70	See Nor	n-Homologous	End Joining (Page 2)		
H00006446-M01	SGK1 (4D7-G3)	Mouse	Monoclonal	ELISA, IHC-P, IF, RNAi, WB	Hu	
H00006446-M02	SGK1 (3E3)	Mouse	Monoclonal	ELISA, IHC-P, WB	Hu	
H00006446-M03	SGK1 (1C4)	Mouse	Monoclonal	ELISA, IHC-P, WB	Hu	
NB100-2132/2133	SIRT1	Rabbit	Polyclonal	IP, WB	Hu	
NB600-906	SIRT2	Rabbit	Polyclonal	ICC, IF, WB	Mu	Sp Ap
NB110-57573	SIRT1 (E104)	Rabbit	Monoclonal	ICC, IHC-P, IP, WB	Hu	
NB110-57574	SIRT1 (E54)	Rabbit	Monoclonal	FACS, ICC, IP, IHC, WB	Hu	
NB100-2230	SIRT2	Rabbit	Polyclonal	IP, WB	Hu	H
NB110-57575	SIRT2 (EP1668Y)	Rabbit	Monoclonal	FACS, ICC, IP, WB	Hu, Rt	·N
NB600-476	TERT	Rabbit	Polyclonal	IF, IP, WB	Hu	1
NB100-317	TERT (2C4)	Mouse	Monoclonal	FACS, ICC, IF, IHC, WB	Hu Featured Product	
NB100-297	TERT (2D8)	Mouse	Monoclonal	FACS, ICC, IF, WB	Hu	2.5
NB120-32020	TERT (Y182)	Rabbit	Monoclonal	FACS, ICC, WB	ни Ни	

DAF-3 Antibody NB100-1924

Western blot analysis of C. elegans. Lane 1: wild worm type Lane 2: DAF-3 deletion worms using NB100-1924.

Species: Ce Applications: ChIP, IP, WB

FOXO3A Antibody NB100-613

IP/Western blot analysis of MCF7 cells using NB100-613.

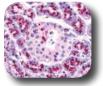
Species: Hu Applications: WB, IP

HSF1 (EP1710Y) Antibody NB110-57058

Immunohistochemical analysis of human ovarian carcinoma using NB110-57058.

Species: Hu Applications: FACS, ICC, IHC, IP, WB

Can't Decide? Try a SuperNovus Pack: NB100-913 • TERT • Includes 2 anti-TERT Antibodies

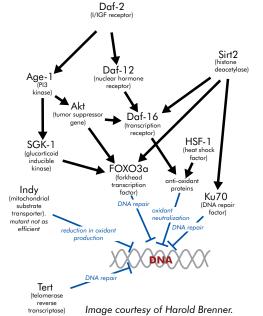

SIRT1(E54) Antibody NB110-57574

Species: Hu Applications: FACS, ICC, IHC, IP, WB

Immunohistochemical analysis of human lymphoma using NB110-57574.

TERT (2C4) Antibody NB100-317

Species: Hu Applications: FACS, ICC, IF IHC, IHC-P, WB


Immunohistochemical analysis of exocrine cells and a subset of islets of Langerhans using NB100-317.

TERT (2D8) Antibody NB100-297

Species: Hu Applications: FACS, ICC, IF, WB

Western blot analysis of MJ90 cells using NB100-297.

For research purposes only. Not for use in humans. Prices subject to change.

FAX: 303.730.1966 • WEB: www.novusbio.com

Syndromes Linked to DNA Repair Defects

Defects in DNA repair are responsible for several genetic disorders, including xeroderma pigmentosum, Cockayne syndrome and trichothiodystrophy. Werner's syndrome, Bloom's syndrome and ataxia telangiectasia are often called accelerated aging diseases because

their victims appear elderly and suffer from aging related diseases at an abnormally young age. Other diseases associated with reduced DNA repair function include Fanconi's anemia, hereditary breast cancer and hereditary colon cancer.

Disease	Catalog#	Product	Host	Туре	Application	Species
Ataxia Telangiectasia		ATM	See Hom	iologous Recom	bination (Page 3)	
Bloom Syndrome Protein Blm	NB100-214	BLM	Rabbit	Polyclonal	IHC, WB	Hu
••••••••••••••••••••••••••••••	NB100-324	BLM	Goat	Polyclonal	IHC, WB	Hu
••••••••••••••••••••••••••••••	NB100-1588	BLM	Rabbit	Polyclonal	IP	
••••••	NB100-1589	BLM	Rabbit	Polyclonal	IP	 Mu
••••••	NB100-1590	BLM	 Rabbit	Polyclonal	IP, WB	 Mu
•••••••	NB100-669	BLM (BFL-103)	Mouse	Monoclonal	IHC-Fr, WB	 Ни
••••••	H00000642-A01	BLMH	Mouse	Polyclonal	ELISA, WB	Hu
••••••	NBP1-46851	BLM [phospho Thr99]	Rabbit	Polyclonal	WB	 Ни
Hereditary Breast Cancer		BRCA1	See Hom	iologous Recom	bination (Page 3)	
•••••••	•••••	BRCA2	• • • • • • • •	See Homologous Recombination (Page 3)		
Fanconi Anemia	NB100-2564	FANCA	 Rabbit	Polyclonal	WB	 Ни
••••••	NBP1-18977	FANCA	Rabbit	Polyclonal	 IP, WB	 Ни
••••••	NB100-2565	FANCC	 Rabbit	Polyclonal	WB	Hu, Mu, Rt_ 📐
•••••••••••••••••••••••••••••••••••••••	NB100-182	FANCD2	Rabbit	Polyclonal	IHC-P, IP, WB	Hu. Mu
••••••	NBP1-18976	FANCD2	Rabbit	Polyclonal	IF, IHC, IP, WB	Hu
•••••	NB100-411	FANCD2 (103)	Mouse	Monoclonal	WB, ELISA	Hu
••••••	NB100-316	FANCD2 (FI-17)	Mouse	Monoclonal	ChIP, IP, WB	 Hu
••••••	NB100-502	FANCD2 [Ser222]	Rabbit	Polyclonal	WB	 Ни
••••••	NB100-2566	FANCG	Rabbit	Polyclonal	WB	Ни
•••••	H00002189-M01	FANCG (2C8)	Mouse	Monoclonal	ELISA, IF, RNAi, WB	
••••••	NB100-60447	FANCI	Rabbit	Polyclonal	IP, WB	Ни
••••••	NB100-416	FANCI	Rabbit	Polyclonal	IP, WB	Hu
•••••	NB100-350	FANCJ (G011-3E6)	Mouse	Monoclonal	WB	Hu
•••••	NB100-189	FANCJ (pp15-IB4)	Mouse	Monoclonal	WB	Hu
Hereditary Nonpolyposis Colorectal Cancer		MSH2		natch Repair (Pa		
		MLH1		natch Repair (Pa		
	•••••	PMS1	• • • • • • • • •	natch Repair (Pa	****	
		PMS2		natch Repair (Pa		
Werner Svndrome	NB100-471	WRN	Rabbit	Polyclonal	IP, WB	 Ни
			Rabbit			
••••••	NB100-472 25480002	WRN	Rabbit	Polyclonal Polyclonal	IP, WB ELISA	Hu Hu
Keroderma Piamentosum	2J70000Z			• • • • • • • • • • • • • • •		
veronennin Liñinghinozonn		• • • • • • • • • • • • • • • • • • • •	•••••	eotide Excision		
••••••		XPB	•••••	eotide Excision		
••••••		XPC	• • • • • • • •	eotide Excision		
••••••		XPD	• • • • • • • •	eotide Excision		
		XPG	See Nucl	eotide Excision	Kepair (Page 9)	

Can't Decide? Try a SuperNovus Pack:

NB100-918 • BLM (Human) SuperNovus Pack • Includes 2 anti-Blm Antibodies NB910-41530 • BLM (Mouse) SuperNovus Pack • Includes 2 anti-Blm Antibodies

2004 Feb;24(3):1279-91. [PMID: 14729972]

Western blot analysis of 293T cells using NB100-214.

Species: Hu Applications: IP, WB

FANCD2 Antibody NB100-182

Immunofluorescent staining of SiHa cells using NB100-182.

Species: Hu, Mu Applications: IF, IHC-P, IP, WB

FANCG Antibody NB100-2566

Western blot analysis of FANCG transfected COS1 cell lysate using NB100-2566.

Species: Hu Applications: WB

FANCJ Antibody NB100-416

Western blot analysis of: (1) MCF-7 lysate (2) HeLa lysate (3) 293 lysate and (4) SKOV3 lysate using NB100-416.

Species: Hu Applications: WB, IP

WRN Antibody NB100-472

Western blot

Species: Hu Applications: IP, WB analysis of 293T whole cell lysate using NB100-472.

Daily product updates! www.novusbio.com

[BLM Antibody NBP1-44075] Davies SL, et al. Phosphorylation of the Bloom's

syndrome helicase and its role in recovery from S-phase arrest. Mol Cell Biol.

IN THE NEWS

- 1. [53BP1 NB100-304] Zhang M, et al. Selective targeting of radiation-resistant tumor-initiating cells. Proc Natl Acad Sci U S A. 2010 Feb 23;107(8):3522-7. [PMID: 20133717]
- [APE1 NB100-101] Yang Z, et al. Nitric oxide initiates progression of human melanoma via a feedback loop mediated by apurinic/apyrimidinic endonuclease-1/redox factor-1, which is inhibited by resveratrol. Mol Cancer Ther. 2008 Dec;7(12):3751-60. [PMID: 19074850]
- 3. [ATM NB100-104] [SMC1 [phospho-Ser966] NB100-206] Hu H, et al. ATM is down-regulated by N-Mycregulated microRNA-421. Proc Natl Acad Sci U S A. 2010 Jan 26;107(4):1506-11. [PMID: 20080624]
- 4. [Blooms Syndrome Protein Blm [phospho Thr99] NBP1-46851] Shimura T, et al. Bloom's syndrome helicase and Mus81 are required to induce transient double-strand DNA breaks in response to DNA replication stress. J Mol Biol. 2008 Jan 25;375(4):1152-64. [PMID: 14729972]
- [BRCA1 [phospho Ser1423] NB100-226] Cheng WH, et al. WRN is required for ATM activation and the Sphase checkpoint in response to interstrand cross-link-induced DNA double-strand breaks. Mol Biol Cell. 2008 Sep;19(9):3923-33. Epub 2008 Jul 2. [PMID: 18596239]
- [Dnmt3a NB100-265] Shikauchi Y, et al. SALL3 interacts with DNMT3A and shows the ability to inhibit CpG island methylation in hepatocellular carcinoma. Mol Cell Biol. 2009 Apr;29(7):1944-58. Epub 2009 Jan 12. [PMID: 19139273]
- [Dnmt3b NB100-266] Morey Kinney SR, et al. Stage-specific alterations of DNA methyltransferase expression, DNA hypermethylation, and DNA hypomethylation during prostate cancer progression in the transgenic adenocarcinoma of mouse prostate model. Mol Cancer Res. 2008 Aug;6(8):1365-74. [PMID: 18667590]
- 8. [FANCD2 NB100-182] Lyakhovich A, Surrallés J. Constitutive activation of caspase-3 and Poly ADP ribose polymerase cleavage in fanconi anemia cells. Mol Cancer Res. 2010 Jan;8(1):46-56. [PMID: 20068062]
- [Mre11 NB100-142] Bencokova Z, et al. ATM activation and signaling under hypoxic conditions. Mol Cell Biol. 2009 Jan;29(2):526-37. Epub 2008 Nov 4. [PMID: 18981219]
- [Mre11 NB100-142] [NBS1 NB100-143] [RAD50 NB100-154] Karen KA, et al. Temporal regulation of the Mre11-Rad50-Nbs1 complex during adenovirus infection. J Virol. 2009 May;83(9):4565-73. [PMID: 19244322]
- [Ogg1 NB100-106] de Souza-Pinto NC, et al. The recombination protein RAD52 cooperates with the excision repair protein OGG1 for the repair of oxidative lesions in mammalian cells. Mol Cell Biol. 2009 Aug;29(16):4441-54. Epub 2009 Jun 8. [PMID: 19506022]
- 12. [Rad51C NB100-177] Gildemeister OS, Sage JM, Knight KL. Cellular redistribution of Rad51 in response to DNA damage: novel role for Rad51C. J Biol Chem. 2009 Nov 13;284(46):31945-52. [PMID: 19783859]
- [Telomerase reverse transcriptase NB100-317] Masutomi K, et al. The telomerase reverse transcriptase regulates chromatin state and DNA damage responses. Proc Natl Acad Sci U S A. 2005 Jun 7;102(23):8222-7. Epub 2005 May 31. [PMID: 15928077]
- 14. [53BP1 NB100-904] Attwooll CL, Akpinar M, Petrini JHJ. The mre11 complex and the response to dysfunctional telomeres. Mol Cell Biol. 2009 Oct;29(20):5540-51. [PMID: 19667076]
- [APE1 NB100-116] Batuello CN, Kelley MR, Dynlacht JR. Role of Ape1 and base excision repair in the radioresponse and heat-radiosensitization of HeLa Cells. Anticancer Res. 2009 Apr;29(4):1319-25. [PMID: 19414382]

U.S. ORDERING

Phone:	303.730.1950
	888.506.6887
Fax:	303.730.1966
Email:	orders@novusbio.com
Web:	www.novusbio.com

EUROPEAN ORDERING

Novus El	irope
Phone:	+44 (0) 1223 426001
Fax:	+44 (0) 871 971 1635
Email:	europe@novusbio.com
Web:	www.novusbio.com

Novus Germany

Phone:	+49-6922-22340-60
Fax:	+49-0800-58926-79
Email:	germany@novusbio.com
Web:	www.novusbio.com

CANADIAN ORDERING

Phone:	905.827.6400
Phone:	855.668.8722
Fax:	905.827.6402
Email:	canada@novusbio.com
Web:	www.novusbio.com

TECHNICAL SUPPORT

Phone:	303.730.1950
	888.506.6887
Email:	technical@novusbio.com

Novus Italy

Phone:	, +39 02 4032 6786
Fax:	+39 02 4032 6340
Email:	italy@novusbio.com
Web:	www.novusbio.com

Chat with a Scientist featured on our website: www.novusbio.com