

Immune Checkpoint Blockade

Investigate co-stimulatory and co-inhibitory molecules with high-quality, multi-application validated antibodies. Co-inhibitory and co-stimulatory molecules play a critical role in T cell activation and tumor cell recognition and killing. Along with MHC/TCR engagement, co-signaling molecules direct the outcome of T cell activation. In the context of cancer, tumor cells exploit the upregulation of co-inhibitory molecules to promote their own survival and avoid immune recognition.

VISTA/PD-1H Antibody NBP1-88967

IHC: VISTA staining of human kidney.

LAG-3 Antibody NBP1-97657

(9 Publications)

PD-L1 Antibody MAB1561

IHC: PD-L1 staining of human colon cancer.

(1 Publication)

PD-1 Antibody AF1086

IHC: PD-1 staining of human lymph node.

(9 Publications)

STING Pathway

Interrogate the STING Pathway by Western blot, IHC,

or Flow. STING (Stimulator of Interferon Genes) is a detector of intracellular viral molecules and double stranded DNA. Activation of STING triggers phosphorylation of downstream NAK/TBK1 and IRF3 to activate immunity and a type I interferon response. The ability of STING agonists to activate a potent anti-tumor immune response has driven increased interest in the pathway for cancer immunotherapy.

IRF3 Antibody (2G3) NBP1-47812

IHC: IRF3 staining of adenocarcinoma of colon tissue.

NAK/TBK1 Antibody NB100-56705

IHC: TBK1 on human testis.

STING Antibody NBP2-24683

IHC: STING staining of human breast tumor.

(5 Publication)

ReIA/NFkB p65 Antibody NB100-2176

IHC: RelA staining of human DLBCL showing nuclear expression in the tumor cells.

(16 Publications)

Purinergic Signaling

Quantify ATP levels and Probe Purinergic

Signaling. Similar to inhibitory members of the B7 family, adenosine signaling dampens anti-tumor immunity. The purine nucleotide, ATP, is converted by extracellular receptors to adenosine. This molecule signals through G-protein coupled receptors, including the A2A receptor, to mediate immunosuppresive responses. It has been demonstrated that adenosine receptor blockade enhances anti-tumor immunity. Because of its potential to regulate immunity, adenosine signaling is considered next generation immune checkpoint blockade.

Adenosine A2a Receptor NB300-597

ICC/IF: Adenosine A2a receptor antibody staining in the cytoplasm of U251 cells.

CD73 Antibody NBP1-85740

IHC: CD73 antibody staining of human duodenum.

NBP1-90071

CD39 Antibody

ICC/IF: CD39 antibody staining in human aortic valve endothelial cells.

HIF-1 alpha Antibody NB100-105

WB; HIF-1 alpha analysis of COS-7 nuclear extracts.

(580 Publications)

Myeloid Cell Biology and The Tumor Microenvironment

Understand the tumor microenvironment and myeloid cell biology with Novus antibodies.

Suppressive myeloid cells in the tumor microenvironment inhibit anti-tumor immunity. By secreting suppressive and angiogenic molecules, tumor-associated macrophages and myeloid-derived suppressor cells promote tumor growth and survival. Understanding myeloid cell biology is key to developing improved immunotherapies.

CD11b Antibody NB110-40766

Flow: Detection of CD11 b/c in fixed Hela cells.

CD68 Antibody NB100-683

IHC staining of CD68 in human spleen.

(26 Publications)

HLA-DR Antibody NB100-77855

Flow: HLA-DR expression in BDCM cells.

(26 Publications)

iNOS Antibody NB300-605

WB: iNOS staining in stimulated astrocytes.

(12 Publications)