Immune Checkpoint Blockade

Investigate co-stimulatory and co-inhibitory molecules with high-quality, multi-application validated antibodies. Co-inhibitory and co-stimulatory molecules play a critical role in T cell activation and tumor cell recognition and killing. Along with MHC/TCR engagement, co-signaling molecules direct the outcome of T cell activation. In the context of cancer, tumor cells exploit the upregulation of co-inhibitory molecules to promote their own survival and avoid immune recognition.

<table>
<thead>
<tr>
<th>T cell</th>
<th>APC</th>
</tr>
</thead>
<tbody>
<tr>
<td>OX40</td>
<td>OX40L</td>
</tr>
<tr>
<td>CD27</td>
<td>CD27L</td>
</tr>
<tr>
<td>CD137</td>
<td>CD137L</td>
</tr>
<tr>
<td>CD28</td>
<td>CD80/CD86</td>
</tr>
<tr>
<td>TCR</td>
<td>MHC</td>
</tr>
<tr>
<td>CTLA-4</td>
<td>CD80/CD86</td>
</tr>
<tr>
<td>PD1</td>
<td>PD-L1/PD-L2</td>
</tr>
<tr>
<td>CD80</td>
<td>PD-L1</td>
</tr>
<tr>
<td>TIM3</td>
<td>GAL9</td>
</tr>
</tbody>
</table>

Costimulatory

Coinhibitory

STING Pathway

Interrogate the STING Pathway by Western blot, IHC, or Flow. STING (Stimulator of Interferon Genes) is a detector of intracellular viral molecules and double stranded DNA. Activation of STING triggers phosphorylation of downstream NAK/TBK1 and IRF3 to activate immunity and a type I interferon response. The ability of STING agonists to activate a potent anti-tumor immune response has driven increased interest in the pathway for cancer immunotherapy.

STING Antibody

NBP2-24683

IHC: STING staining of human breast tumor.

IRF3 Antibody (2G3)

NBP1-47812

IHC: IRF3 staining of adenosarcoma of colon tissue.

PD-L1 Antibody

MAB1561

IHC: PD-L1 staining of human colon cancer.

(2 Publications)

LAG-3 Antibody

NBP1-97657

IHC: LAG-3 staining in resting and PHA activated lymphocytes.

(9 Publications)

IRF3 Antibody (2G3)

NBP1-47812

IHC: IRF3 staining of human breast tumor.

(12 Publications)

PD-1 Antibody

AF1086

IHC: PD-1 staining of human lymph node.

(10 Publications)

RelA/NFkB p65 Antibody

NB100-2176

IHC: RelA staining of human DLBCL showing nuclear expression in the tumor cells.

(19 Publications)

VISTA/PD-1H Antibody

NBP1-88967

IHC: VISTA staining of human tonsil.

NAK/TBK1 Antibody

NB100-56705

IHC: NAK/TBK1 on human testis.

(12 Publications)

PD-L1 Antibody

MAB1561

IHC: PD-L1 staining of human breast tumor.

(12 Publications)

LAG-3 Antibody

NBP1-97657

IHC: LAG-3 staining in resting and PHA activated lymphocytes.

(9 Publications)

IRF3 Antibody (2G3)

NBP1-47812

IHC: IRF3 staining of adenosarcoma of colon tissue.

(2 Publications)

PD-1 Antibody

AF1086

IHC: PD-1 staining of human lymph node.

(10 Publications)

RelA/NFkB p65 Antibody

NB100-2176

IHC: RelA staining of human DLBCL showing nuclear expression in the tumor cells.

(19 Publications)
Purinergic Signaling

Quantify ATP levels and Probe Purinergic Signaling.
Similar to inhibitory members of the B7 family, adenosine signaling dampens anti-tumor immunity. The purine nucleotide, ATP, is converted by extracellular receptors to adenosine. This molecule signals through G-protein coupled receptors, including the A2A receptor, to mediate immunosuppressive responses. It has been demonstrated that adenosine receptor blockade enhances anti-tumor immunity. Because of its potential to regulate immunity, adenosine signaling is considered next generation immune checkpoint blockade.

Myeloid Cell Biology and The Tumor Microenvironment

Understand the tumor microenvironment and myeloid cell biology with Novus antibodies.
Suppressive myeloid cells in the tumor microenvironment inhibit anti-tumor immunity. By secreting suppressive and angiogenic molecules, tumor-associated macrophages and myeloid-derived suppressor cells promote tumor growth and survival. Understanding myeloid cell biology is key to developing improved immunotherapies.

Monocytic

Mouse monocytic: CD11b+ Gr-1/Ly-6Glo Ly-6Cint
Human monocytic: Lin- CD14+ CD15- CD66b- HLA-DR-

Granulocytic

Mouse granulocytic: CD11b+ Gr-1/Ly-6Ghi Ly-6Cint
Human granulocytic: Lin- CD11b+ CD14+ CD15+ CD66b+ HLA-DR-

Stimulatory vs. Suppressive Myeloid Cells

Stimulatory

- IL-12hi IL-10lo
- ROS
- RNI

Suppressive

- IL-12lo IL-10hi
- TGF-B
- Arginase

Adenosine A2a Receptor Antibody

NB300-597

ICC/IF: Adenosine A2a receptor antibody staining in the cytoplasm of U251 cells.

(1 Publication)

CD39 Antibody

NBP1-90071

ICC/IF: CD39 antibody staining in human aortic valve endothelial cells.

(4 Publications)

CD11b Antibody

NB110-40766

Flow: Detection of CD11 b/c in fixed Hela cells.

(16 Publications)

CD11b Antibody

NB100-40766

Flow: HLA-DR expression in BDCM cells.

(26 Publications)

CD73 Antibody

NBP1-85740

IHC: CD73 staining of human endometrium.

(5 Publications)

HIF-1 alpha Antibody

NB100-105

WB: HIF-1 alpha analysis of COS-7 nuclear extracts.

(666 Publications)

CD68 Antibody

NB100-683

IHC staining of CD68 in human spleen.

(33 Publications)

iNOS Antibody

NB300-605

WB: iNOS staining in stimulated astrocytes.

(20 Publications)