Topical application of substance P promotes wound healing in streptozotocin-induced diabetic rats

Vinay Kant a,⇑, Dinesh Kumar a, Dhirendra Kumar a, Raju Prasad a, Anu Gopal a, Nitya N. Pathak a, Pawan Kumar b, Surender K. Tandan a

a Division of Pharmacology and Toxicology, Indian Veterinary Research Institute, Izatnagar, Bareilly 243 122, U.P., India
b Division of Pathology, Indian Veterinary Research Institute, Izatnagar, Bareilly 243 122, U.P., India

1. Introduction

Diabetes mellitus (DM) is a very complex disease that drastically influences normal functioning of the affected individual including wound healing process, which is markedly delayed. The most common complications of delayed wound healing of diabetics are: reduction in chemotactic and phagocytic activities of neutrophils [1], decreased vasculogenesis [2], decreased endothelial nitric oxide synthase (eNOS) activity [3] and reduction of substance P (SP) level [4]. Abnormal nerve distribution and neuroinflammation are also connected with the chronic nonhealing wounds in DM. The patients suffering from DM have diminished number of nerves and depleted nerve growth factor in uninjured skin and cutaneous wounds [5].

SP, a 10-amino acid neuropeptide, is released by the sensory nerve fibers during tissue insult and has been reported to be a mediator of inflammation in wound healing [6]. It binds to neurokinin-1 (NK-1) receptors and elicits vasodilatory action via nitric oxide, alters vascular permeability and enhances the delivery and accumulation of leukocytes to tissues for the expression of the local immune response [7]. SP stimulates the production of various cytokines such as, tumor necrosis factor-alpha (TNF-α), interleukin-1beta (IL-1β), IL-2, IL-8 and IL-6, and growth factors namely, vascular endothelial growth factor (VEGF) and transforming growth factor-beta1 (TGF-β1), involved in wound healing [8–11]. It is also involved in the angiogenesis, epidermal cell proliferation, and capillary and fibroblast proliferation [12,13]. Depleted SP and decreased number of SP-positive fibers has been reported in the dermis of diabetic patients [4,14]. The reduction of SP directly contributes to the abnormal healing response in patients with diabetes [15]. SP has been shown to promote cutaneous wound healing in non-diabetic rats [11,16]. Topical application of SP (10−7 M) enhanced wound closure in nitric oxide synthase knock out mice and non-diabetic rats [5,11]. In addition, exogenously administration of SP stimulated fibroblast
proliferation, angiogenesis and collagen organization during Achilles tendon healing in rats [13]. In view of the above, we hypothesized that topical supplementation of SP might be helpful in improving impaired wound healing in diabetics. Thus, the present study was planned to investigate the time-dependent effects of topically applied SP in open excision wound in diabetic rats. Additionally, we used pluronic F-127 (PF-127) gel for the topical delivery of SP at the wound site, as we found [17] that PF-127 gel markedly improved wound healing in non-diabetic rats.

2. Experimental procedures

2.1. Experimental animals and diabetes induction

Healthy adult male Wistar rats (170–200 g) were procured from Laboratory Animal Resource Section, Indian Veterinary Research Institute, Izatnagar (U.P.), India. The experimental protocol was approved by the Institute Animal Ethics Committee. All animals received humane care in accordance with National Institutes of Health’s Guide for the Care and Use of Laboratory Animals (NIH Publication N. 85-23, revised 1985). Diabetes was induced by single intraperitoneal injection of streptozotocin (60 mg/kg; Sigma-Aldrich, USA). After 48 h, animals with blood glucose levels ≥300 mg/dl were selected. After 7 days of diabetic induction, the open excision-type wound

2.2. Grouping

Animals were divided equally in the following three groups:

(I) Control: Sterile normal saline was applied on the wounds once daily for 19 days.

(II) PF-127 gel-treated (gel-treated): 400 µl of PF-127 gel (25%, Sigma Aldrich, USA) was applied topically once daily for 19 days.

(III) SP-treated: 400 µl of SP (10^{-6}M, Sigma Aldrich) in PF-127 gel (25%) was applied topically on wounds once daily for 19 days.

2.3. Photography and wound contraction

Photograph of each wound was taken on days 0, 3, 7, 11, 14 and 19 post-wounding. The wound area was determined planimetrically on these days and per cent wound contraction was calculated by Wilson’s formula as follows:

\[\%	ext{ wound contraction} = \frac{\text{0 day wound area} - \text{wound area on particular day}}{\text{0 day wound area}} \times 100 \]

2.4. Tissue harvesting

Five animals from each group were killed on days 3, 7, 14 and 19, and granulation/healing tissue was collected. One portion was stored in RNA stabilization reagent (RNAlater™, Qiagen, USA) at −20 °C until RNA extraction. The second portion was preserved in 10% neutral buffer formalin for histopathological evaluation. Third portion was homogenized in ice-cold lysis buffer [100 mg tissue in 1 ml lysis buffer: 1% Triton X 100, 10 mM phenylmethylsulfonyl fluoride, 1 mg/ml aprotinin and 1 mg/ml leupeptin in phosphate buffer saline (pH 7.4)] and centrifuged at 12,000 rpm for 10 min at 4 °C. The aliquots of the supernatant were prepared and stored at −80 °C till further processing for Western blotting and enzyme linked immunosorbant assay (ELISA).

2.5. Real-time RT-PCR

The mRNA expressions of TNF-α, IL-10, TGF-β1, VEGF, IL-1β, matrix metalloproteinases-9 (MMP-9), heme oxygenase-1 (HO-1) and eNOS were determined with real-time RT-PCR. RNA was isolated from wound tissues using RibozolTM RNA extraction reagents (Amresco, USA) and cDNA was synthesized using cDNA synthesis kit (Fermentas, Lafayette, CO, USA). cDNA was used as a template for the subsequent real time RT-PCR. The real time PCR assay was performed by using 2 × Quantitect SYBR Green PCR Master Mix, (Qiagen, CA, USA) in CFX96 real time PCR DET SYS (C-1000 thermal cycler, BIO-RAD laboratories India). The real-time RT-PCR experiment was carried out according to the manufacturer’s instruction and the following thermal cycling profile was used (40 cycles): 95 °C for 15 min, 94 °C for 15 s, 58–62 °C (depending on primer) for 30 s and 72 °C for 30 s. Details of the primers used

Table 1

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Gene</th>
<th>Primer sequences</th>
<th>Product size</th>
<th>Annealing temp. (°C)</th>
<th>Accession number</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>β-actin</td>
<td>F: 5’-TCTGACTCGGCTTGAGATCC-3’ R: 5’-GACCATCTGTACCTGGCTG-3’</td>
<td>132</td>
<td>59</td>
<td>NC_005111</td>
</tr>
<tr>
<td>2</td>
<td>TGF-β1</td>
<td>F: 5’-AAG TGG ATC CAC GAC CCC AA-3’ R: 5’-GCTGCATCTGCAGGACGCA-3’</td>
<td>246</td>
<td>62</td>
<td>NM021578.2</td>
</tr>
<tr>
<td>3</td>
<td>VEGF</td>
<td>F: 5’-GCGAGCAGATACGAGACAG-3’ R: 5’-ACCGCCTGTCGTCG-3’</td>
<td>234</td>
<td>62</td>
<td>NM031836.2</td>
</tr>
<tr>
<td>4</td>
<td>TNF-α</td>
<td>F: 5’-GCCGACCACTCATCTCTTGCT-3’ R: 5’-TGCGATGGCTGGGGATCAC-3’</td>
<td>153</td>
<td>60</td>
<td>NM012675.3</td>
</tr>
<tr>
<td>5</td>
<td>IL-1β</td>
<td>F: 5’-GACACGAGCAAGAAAACCC-3’ R: 5’-TGCGATGGCTGGGGATCAC-3’</td>
<td>124</td>
<td>58</td>
<td>NC_005102</td>
</tr>
<tr>
<td>6</td>
<td>MMP-9</td>
<td>F: 5’-CTGGAAGCTTCAAGGCTGATC-3’ R: 5’-CCCCAGAAGATTTTGTCATGG-3’</td>
<td>135</td>
<td>59</td>
<td>NC_005102</td>
</tr>
<tr>
<td>7</td>
<td>IL-10</td>
<td>F: 5’-CTGCTCTTACTGCTGGGAG-3’ R: 5’-TGGCAGAGAAGGGCTATGAC-3’</td>
<td>161</td>
<td>60</td>
<td>NM012854.2</td>
</tr>
<tr>
<td>8</td>
<td>HO-1</td>
<td>F: 5’-AGACTCCCTACAGACAGTTT-3’ R: 5’-CTGAGAGAGAGGCTATGAC-3’</td>
<td>247</td>
<td>60</td>
<td>NM012580.2</td>
</tr>
<tr>
<td>9</td>
<td>eNOS</td>
<td>F: 5’-TGATGTCATATGGCCAAACG-3’ R: 5’-TCTGAGTGGCCAAATGTCCCTG-3’</td>
<td>145</td>
<td>59</td>
<td>NC_005103</td>
</tr>
</tbody>
</table>
are given in Table 1. The \(\Delta \text{ACT} \) method of relative quantification was used to determine fold change in expression and was obtained as \(2^{\Delta \text{ACT}} \) [18].

2.6. Western blotting

The expression levels of VEGF and TGF-\(\beta_1 \) were determined by Western analysis. Proteins were separated by using SDS-PAGE and transferred to polyvinylidene difluoride membrane. The membranes were then incubated with goat polyclonal antibodies against VEGF and TGF-\(\beta_1 \) (Santa Cruz Biotechnology, Santa Cruz, CA, USA). After washing, membranes were incubated with horseradish peroxidase (HRP)-conjugated chicken anti-goat IgG (Santa Cruz Biotechnology, Santa Cruz, CA, USA). \(\beta \)-actin was used to normalize protein loading. The blots were subsequently scanned and band intensity was quantified by densitometry software (ImageJ, NIH). Four minimum such blots were performed for every protein analyzed.

2.7. ELISA

The supernatants of lysates were quantitatively assayed for TNF-\(\alpha \) and IL-10 (Komabiotech Inc., Seoul, Korea) levels as per the manufacturer’s instructions.

2.8. Hematoxylin and Eosin (H&E) staining

5 \(\mu \)m thick tissue sections were stained with H & E as per standard method and visualized under light microscope (Leica DFC450C, Wetzlar, Germany) at magnification 10\(\times \) and 40\(\times \). Ten

Table 2

<table>
<thead>
<tr>
<th>Group</th>
<th>Day 0 (STZ injected)</th>
<th>Day 2</th>
<th>Day 7 (day of wounding)</th>
<th>Day 3 post wounding</th>
<th>Day 7 post wounding</th>
<th>Day 14 post wounding</th>
<th>Day 19 post wounding</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>102.6 ± 6.42(^a)</td>
<td>424.4 ± 33.81(^b)</td>
<td>464.2 ± 34.37(^b)</td>
<td>440.2 ± 26.08(^b)</td>
<td>427.8 ± 24.25(^b)</td>
<td>424.8 ± 20.39(^b)</td>
<td>478.8 ± 15.66(^b)</td>
</tr>
<tr>
<td>Gel</td>
<td>102.4 ± 4.23(^a)</td>
<td>434.4 ± 30.24(^b)</td>
<td>444.8 ± 30.58(^b)</td>
<td>448.8 ± 33.41(^b)</td>
<td>446.2 ± 25.86(^b)</td>
<td>432.4 ± 22.06(^b)</td>
<td>417.6 ± 16.73(^b)</td>
</tr>
<tr>
<td>SP</td>
<td>98.6 ± 5.87(^a)</td>
<td>466.6 ± 33.61(^b)</td>
<td>475.8 ± 35.01(^a)</td>
<td>439.6 ± 24.71(^b)</td>
<td>451.2 ± 31.64(^b)</td>
<td>447.8 ± 20.69(^b)</td>
<td>425.8 ± 19.28(^b)</td>
</tr>
</tbody>
</table>

Blood glucose levels were compared to day 0 levels of the same group. Values with different superscripts (i.e. ‘a’ and ‘b’) vary significantly. \(^b p < 0.001 \).
random fields (40×) from different sections in each group were evaluated and scoring was done according to the method of Greenhalgh et al. [19] with some modifications. Briefly, scoring for each field was done from 1 to 15. The fields showing none to very less amount of inflammatory cell accumulation and granulation tissue were scored from 1 to 3. Score of 4–6 was given to the fields showing thin immature granulation tissue, which was dominated by inflammatory cells, few fibroblasts, blood vessels and collagen deposition. Score of 7–9 was assigned to the fields which showed moderate thick granulation tissue dominated by more fibroblasts and collagen deposition, more neovascularization, minimal to moderate epithelial layer formation and few inflammatory cells. Score of 10–12 was given to thick, vascular granulation tissue which was dominated by fibroblasts with extensive extracellular collagen deposition and enveloped by partially immature to completely formed epithelial layer. Scoring 13–15 was given to the fields showing thick mature granulation tissue dominated by compact collagen deposition parallel to the well formed complete epithelial layer and decreased fibroblasts and blood vessels to normal.

2.9. Immunohistochemistry for CD31 and growth associated protein-43 (GAP-43)

Sections were immunostained for CD31 for neovascularization and GAP-43 for axonal regeneration by incubating with respective primary mouse monoclonal antibody (Novus Biologicals, Littleton, CO, USA) and HRP-conjugated goat anti mouse IgG (Santa Cruz Biotechnology). The aminoethylcarbazole (AEC) was used as chromogen substrate (AEC Staining Kit; Sigma-Aldrich, USA). Microphotographs were captured (Leica DFC450C) and twenty random fields were observed (40×) for the semi-quantitative analysis of microvessel density (MVD). However, thirty fields were observed (40×) for the quantification of GAP-43 positive nerve fibers.

2.10. Picrosirius red staining

Assessment of collagen in wound sections was done by staining with picrosirius red (Direct Red 80, Sigma Aldrich, USA) by modified picrosirius procedure [20]. Stained sections were viewed under polarized light (Leica DM2500P) and quantitative study of images for total collagen fraction was done in eight random images (20×) from each group by using ImageJ software.

2.11. Statistical analysis

All data are expressed as mean ± standard error and data were analyzed by two way analysis of variance (ANOVA) followed by Bonferroni’s post test using the GraphPad Prism v4.03 software program (San Diego, CA, USA), and the statistically significant differences were considered at p < 0.05.
3. Results

The animals used in the present study showed the signs of the diabetes from second day after administration of streptozotocin. The blood glucose levels significantly increased in all the groups after 48 h of administration of streptozotocin and the levels remained significantly elevated during the entire experiment (Table 2). Other signs like loss of body weight, polyphagia, polydipsia, polyuria, increased ocular discharge and paraphimosis with bluish coloration of glans penis were also observed.

Grossly, healing of wound was better in SP-treated group, which was evidenced by early formation and shedding of scab. Well formed and thick red granulation tissue was also distinguishable in SP-treated rats at the time of tissue collection particularly on days 3 and 7 post-wounding.

3.1. Wound closure

Gross evaluation of wound revealed that topical application of SP decreased the wound size (Fig. 1A) with significantly increased percent wound contraction (Fig. 1B), as compared to other groups. The mean percent wound contraction of SP-treated group was markedly more from control and gel-treated group on day 7 and this difference continued till day 19 after wound creation. The gel-treated group also showed significantly increased wound contraction on day 11 and 14, as compared to control.

3.2. mRNA expressions and protein expressions/levels of TNF-α, IL-10, VEGF and TGF-β1

Relative mRNA expression of TNF-α significantly decreased in SP- and gel-treated groups on days 7, 14 and 19 post-wounding, as compared to control (Fig. 2A). TNF-α levels were lower in SP-treated group on days 7, 14 and 19 (Fig. 2C). The mRNA expression of IL-10 did not increase markedly in gel- and SP-treated groups (Fig. 2B). However, IL-10 levels increased significantly in SP-treated group on days 7, 14 and 19, as compared to control (Fig. 2D).

VEGF mRNA expression was markedly higher in SP-treated group on day 3 and 7, as compared to control (Fig. 3A). VEGF
protein expression was significantly ($p < 0.001$) higher in SP-treated group on day 7, as compared to control and gel-treated rats (Fig. 3D). mRNA expression of TGF-β_1 was significantly up-regulated on days 3 and 7 in SP-treated group (Fig. 3B). The TGF-β_1 protein expression (Fig. 3E) was also increased significantly in SP-treated group on days 3 and 7.

3.3. mRNA expression of IL-1β, MMP-9, HO-1 and eNOS

The mRNA expression of IL-1β (Fig. 4A) and MMP-9 (Fig. 4B) were significantly decreased on days 14 and 19 in SP-treated group, as compared to control. Moreover, the mRNA expression of HO-1 was significantly increased on day 3 and 7 in SP-treated group (Fig. 3B). The expression of eNOS was significantly higher in SP-treated group during the entire experiment (Fig. 4D).

3.4. H & E staining

The representative images of H & E-stained wound sections are presented in Fig. 5A (40\times) and inset boxes correspond to lower magnification (10\times). On day 3, SP-treated wounds comparatively showed more fibroblast with few inflammatory cells. On day 7, in control group, lower part of wound area covered by fibro fatty connective tissue (fat cells) and superficial area showed marked inflammatory changes within proliferative fibrous tissue. However, in SP-treated group, wound area covered by well formed granulation tissue with marked proliferation of fibroblasts, and new and well formed capillaries.

On day 14, SP-treated group showed well formed granulation tissue with collagen deposition and covered by newly formed epithelial layer. Whereas, control group still showed presence of marked inflammatory cells. On day 19, in SP-treated group, wound area covered by fibroblasts with compact well oriented collagen deposition and few macrophages. There was formation of complete and thick regenerated epithelial layer covering the healed tissue. The wound area of control group still showed prominent inflammatory reaction in upper part, whereas, lower part showed granulation tissue with collagen deposition. Gel-treated group depicted wound area enclosed by fibroblasts with prominent collagen deposition and covered by superficial epithelial layer. Histological scoring revealed significantly higher score of SP-treated group, as compared to other groups (Fig. 5B).

3.5. Neovascularization at wound site by immunostaining for CD31

The representative images of CD31-positive vessels are presented in Fig. 6A (40\times) and inset boxes correspond to lower magnification (10\times). The neovascularization was greater and better in SP-treated group, whereas, newly forming blood vessels were uniformly distributed within granulation tissue with well marked lumen of the vessels and large perimeter. However, in other groups, particularly in control group, the neovascularization was uneven, aberrant and frustrated in nature. The lumen of the vessels was not well marked and vascular occlusion was observed. The microvessel density in SP-treated group was significantly increased on days 3, 7 and 14, and decreased on day 19 (Fig. 6B).

3.6. GAP-43 positive nerve fibers

The representative images of GAP-43 positive fibers are presented in Fig. 7A (40\times). The positive fibers were more in the vessels
and hypodermis. The quantification revealed more GAP-43 positive fibers in SP-treated group and number was significantly higher on day 14 (Fig. 7B).

3.7. Collagen synthesis and deposition

The representative pictures of picrosirius red stained sections are shown in Fig. 8A. The collagen fraction (%) increased in all the three groups in time-dependent manner with no significant difference between groups (Fig. 8B). Apparently, synthesis, deposition, compactness, orientation and organization of collagen were much better in SP-treated wounds, as compared to other groups on respective days.

4. Discussion

The findings of our study showed markedly decreased expression/levels of TNF-α, IL-1β and MMP-9 and increase IL-10 levels in SP-treated group in comparison to control group. SP also increased the expressions of VEGF, TGF-β1, SDF-1α, HO-1 and eNOS. In addition, histologically better granulation tissue with marked fibroblast proliferation, increased MVD, compact collagen

Fig. 5. Effect of substance P (SP) on histological changes in the granulation/healing tissues on days 3, 7, 14 and 19 post-wounding. (A) Representative images of H & E stained wound sections of different groups on days 3, 7, 14 and 19 post-wounding (40× magnification and scale bar 50 μm). Low magnification (10×) images of wounds are shown in inset boxes in the left upper corner. SP-treated wounds comparatively showed more fibroblast with few inflammatory cells on day 3. On day 7, wounds of SP-treated group were covered by well formed granulation tissue with marked proliferation of fibroblasts, and new and well formed capillaries. However, in control group, inflammatory changes were observable within proliferative fibrous tissue in superficial area. On day 14, SP-treated group showed well formed granulation tissue with collagen deposition and covered by newly formed epithelial layer, as compared to marked presence of marked inflammatory cells in control group. On day 19, wound area of SP-treated group showed presence of fibroblasts with compact collagen deposition, and complete and thick regenerated epithelial layer covering the healed tissue was also evident. However, the wound area of control group still showed prominent inflammatory reaction in upper part, whereas, lower part showed granulation tissue with collagen deposition. I: inflammatory cells; F: fibroblasts; BV: blood vessels; FC: fat cells; C: collagen; E: epithelial layer. (B) Histological scoring of H & E stained wound sections. Histological scoring revealed significantly higher score of SP-treated group, as compared to other groups. The data expressed are an average means ± SEM (n = 10). *p < 0.05, **p < 0.01 and ***p < 0.001 indicate significant difference compared with other group(s) on the same day.
deposition and complete regenerated epithelial layer were evidenced in SP-treated group. The results are suggestive of significantly better wound closure in SP-treated rats. Progressively, better wound closure is duly represented by the photographs (Fig. 1A).

Normal wound healing process gets impaired in diabetes due to the alterations in interaction between cytokines and neuropeptides [21]. Hyperglycemia has been found to interrupts the action of vital inflammatory mediators in wound healing [21] and persistent inflammation is responsible for delay in granulation tissue formation and failure of wound closure in diabetes [22,23]. In order to evaluate the effect of once daily topical application of SP on persistent inflammation, we measured the expressions/levels of TNF-α, IL-1β and MMP-9 in the granulation/healing tissues of diabetic rats on different days. SP caused marked reduction in the expression/levels of TNF-α (Fig. 2A and C), IL-1β (Fig. 4A) and MMP-9 (Fig. 4B) on days 14 and 19 post-wounding, which suggests the marked reduction of inflammatory state at wound site, as compared to control.

Macrophages play a pivotal role in wound healing due to their capacity to produce inflammatory cytokines and growth factors [24,25]. The macrophages should change their phenotype from M1 (pro-inflammatory in nature and produce more TNF-α, IL-1β, IL-6, or IL-12) to M2 (anti-inflammatory/angiogenic in nature and are prominent source of TGF-β) during the normal healing process [26–28]. So, the failure in switching of M1 to...
anti-inflammatory/angiogenic M2 macrophages, which is common in diabetic wound, leads to increased expression of TNF-α and decreased expression of IL-10 and results in impaired healing [29–33]. In present study, SP application might caused appropriate switching of the M1 to M2 macrophages, which in turn decreased the expression and levels of TNF-α in SP-treated group, as compared to other group after day 3 post-wounding. So, SP efficiently induces acute inflammation at early stage and reduces it in later stages, which is essential for a good skin repair. This is in agreement with the earlier studies by Leal et al. [34] and Jiang et al. [35].

To further support these effects of SP, we assayed the expression/levels of HO-1, IL-10, and TGF-β1. The expressions of HO-1 (Fig. 4C) and TGF-β1 (Fig. 3B and D) were up-regulated by SP on days 3 and 7. However, the levels of IL-10 were increased on days 7, 14 and 19 by SP application (Fig. 2D). HO-1 has been shown as an anti-inflammatory enzyme [36] and SP induces its expression [37]. IL-10 ([38,39] and TGF-β [40] also possess anti-inflammatory activity and SP has been shown to increase TGF-β [11] and IL-10 [11,41] expressions/levels. Moreover, H & E staining evidently showed that SP markedly and progressively reduce the inflammatory cells at wound site until day 19, as compared to control and gel-treated group (Fig. 5A). These results suggest that SP efficiently abolishes the persistence of inflammatory state at wound site in diabetic rats.

Inhibition of angiogenesis impairs wound healing. VEGF and TGF-β1 are involved in stimulation, promotion and stabilization of new blood vessels [42]. VEGF induces angiogenesis by promoting endothelial cell proliferation and prevent their apoptosis [43]. TGF-β1 has also been connected to neovascularization pathways through several mechanisms. It activates the recruitment of VEGF-expressing hematopoietic effector cells, which establishes a potent signaling set-up in inflammatory wound environment that concurrently stimulates neovascularization [44]. Levels of VEGF...
and TGF-β₁ are found to be decreased in diabetes [45,46]. In the present study, SP significantly increases the expressions of VEGF (Fig. 3A and C) and TGF-β₁ (Fig. 3B and D), as compared to control and gel-treated group. This supports the appropriate angiogenic response at wound site in SP-treated group. This was supported by the increased MVD at wound site in SP-treated group (Fig. 6B), which was confirmed by the immunohistochemistry of CD31 (Fig. 6A). However, decreased MVD and abnormal angiogenesis in control diabetic group consequently delayed wound repair in the present study, which is in agreement with the earlier report [47]. Thus, application of SP seems to restore angiogenesis, with increased, evenly distributed and well formed blood vessels.

HO-1 induction is necessary for efficient wound closure in diabetic mice [48] and its role in angiogenesis is by regulating
the synthesis/activity of VEGF and SDF-1α [49]. So, increased expression of HO-1 in SP-treated group further added to the potential of SP in neovascularization and faster wound healing in diabetic rats. The eNOS and its bioactive product nitric oxide (NO) are also well-established proangiogenic molecules and this endothelial-derived NO is vital for maintenance of proper vasculature nature and regulation of an anti-proliferative and anti-apoptotic state for endothelial cells [50]. In consequence, in the present study, the decreased expression of eNOS in control group resulted in reduced and frustrated angiogenesis, which was restored in SP-treated rats. In previous studies, the inhibition or genetic disruption of eNOS has resulted in delayed wound closure [51] and cutaneous eNOS expression has been reported to be significantly decreased in STZ-induced type 1 diabetic animals [52].

The enzymes primarily involved in the degradation of extra cellular matrix (ECM) are the MMPs. Disruption in the synthesis of MMPs and/or alteration in the balance between enzymes and their inhibitors have been shown to cause disorganization of the ECM [53]. Hence, in present study, decreased expression of MMP-9 (Fig. 4B) in the SP-treated group was responsible for well-formed ECM and granulation tissue formation. Previous study in diabetics has shown that activation of MMP expression is consistent with a pattern associated with increased degradation of ECM [54]. Additionally, decreased expression of TGF-β in control group further added to the increased expression of MMP-9. It has been reported that most MMP genes have TGF-β inhibitory elements in their promoter regions and their expression is decreased by TGF-β [55].

Contractions speed up the wound healing [56]. So, increased wound contraction in SP-treated group (Fig. 1B), as compared to control and gel-treated groups on different days, further supports the fast healing in SP-treated rats. Re-epithelialization also increases the wound contraction and in the present study, well formed epithelial layer was present in SP-treated group on day 14 (Fig. 5A). TGF-β also has a chemoattractant effect on fibroblasts and stimulates their proliferation [57]. Thus, in present study, increased expression of TGF-β1 in SP-treated wound was responsible for the marked proliferation of fibroblasts, which in turn cause more collagen deposition. Collagen deposition is indispensable for granulation tissue formation and it also plays role in re-epithelialization in skin-wound repair process. As evident from H&E (Fig. 5A) as well as picrosirius red staining (Fig. 8A) in our study, collagen deposition, organization and orientation were better in SP-treated group. Picrosirius red staining also revealed that collagen fraction was more in SP-treated group (Fig. 8B). TNF-α application causes reduction in the expression of collagen, which further decreases the tensile strength of the wound [58]. Also, there is a sharp antagonism among the pro-synthetic role of TGF-β1 and the opposite effect of TNF-α in terms of ECM deposition, wound contraction and maturation. TNF-α inhibits Smad phosphorylation through the c-Jun N-terminal kinase (JNK) pathway and reduces the transcription of TGF-β1 [59]. Significantly decreased TNF-α and increased TGF-β1 in SP-treated group in this study suggest that SP efficiently controlled the balance between TNF-α and TGF-β1 for better granulation tissue formation. In agreement to earlier finding [60], the reduced microvessel density and lumen size in SP-treated group on day 19 was due to the deposition of compact and mature collagen fibers which in turn compressed the small blood vessels and reduced their perimeter, so that the endothelial cells go through apoptosis to form the less vascular scar.

Diabetes also contributes to impaired axon sprouting in experimental rat models [61]. GAP-43 is a marker of regeneration and remodeling of the nerve fibers [62,63]. The expression of GAP-43 immunoreactive fibers decreases in diabetic patients [64]. In the present study, increased expression of GAP-43 positive fibers in SP-treated rats revealed better regeneration and remodeling of the axons.

In conclusion, topical SP treatment caused faster as well as organized healing of cutaneous wounds in diabetic rats. Up-regulation of various angiogenic genes like VEGF, TGF-β1, eNOS and HO-1, and stimulation of proliferative phase with marked fibroblast proliferation and collagen deposition are suggestive of improved healing by SP application. So, SP appears to possess great potential in treating cutaneous wounds in diabetics.

Acknowledgements

The authors are thankful to the Director, Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh, India, for providing necessary facilities and support for conducting present study and the Council of Scientific & Industrial Research (CSIR), New Delhi, India, for Senior Research Fellowship (Award letter no: 09/563/0091/2012.EMR-I) to the first author. We are also thankful to the Director, Indian Institutes of Technology (IIT), New Delhi, for providing the facilities of polarized microscopy.

References

laser-evoked responses and of skin nerve fibre markers after

Jiang MH, Chung E, Chi GF, Ahn W, Lim JE, Hong HS, et al. Substance P

